Mechanisms of action and role of intra-articular therapy in the management of chronic synovitis

JPEMS 2014 – Group A1

Under the supervision of Dr. Benoit Le Goff

Chloe Ayroulet Camiel Box Adele Julienne Ronela Popa
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
INTRODUCTION

- Chronic synovitis → chronic inflammation of the synovial membrane in the joint
- Affect 3% of the western population
- Many causes → rheumatoid arthritis (RA) is the most important
- Several treatments :
 - Systemic treatments : immunosuppressive
 - Intra-articular injections
- Studies to improve these drugs efficiency
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
NORMAL SYNOVIAL TISSUE

Articulating bone

Synovial (joint) cavity (contains synovial fluid)

Articulating bone

Synoviocytes

Collagen fiber

Areolar connective tissue

Adipocytes

Synovial membrane (secretes synovial fluid)
NORMAL SYNOVIAL TISSUE

- Synovial membrane 60μm : 2 strates intima & subintima
- In between : subsynovium
NORMAL SYNOVIAL TISSUE

- Trophicity and lubrication → synovial fluid
- Composed by hyaluronic acid, many properties:
 - viscoelastic
 - antalgic
 - anti-inflammatory
 - chondroprotectrices
 - healing

- Synoviocytes:
 - defense against pathogens
 - elimination of intra-articular debris
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
RHEUMATOID ARTHRITIS

- Unknown triggering mechanism
- Actors
 - Lymphocytes
 - Macrophages & neutrophils
 - Synovial fibroblasts
- Diagnosis: ACPA, RF

⇒ Synovial hypertrophy and chronic joint inflammation
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
INTRA-ARTICULAR INJECTION

- local procedure
- role: to increase treatment efficacy
- avoid infections

- Desinfected anatomical surface
- Ultrasound/X-ray
- Aseptic environment
- Intraarticular Needle
CORTICOSTEROID INJECTIONS

- Injectable corticosteroids: methylprednisolone acetate; triamcinolone acetate etc.

- Clearance preventing methods → 12h half-life
Radionuclide-loaded colloidal particles are rapidly phagocytized by macrophages.

- Size requirement:
 - 2-10 μm

Action

- Genotoxic effect:
 - cutaneous necrosis
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
PHARMACODYNAMICS/-KINETICS

- Influencing factors:
 - Dissociation constant
 - Molecular size
 - Protein binding
 - Solubility
 - Inflammation
 - ↑ Capillary permeability
 - ↑ Lymphatic drainage
 - ↓ Proliferated cells decrease uptake

- Half lives NSAIDS and soluble steroids: 1-4 hours
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
NANOPARTICLES

- Synthetic polymers: ↑ retention time
- Reach target site → release drugs → degrade
- Release rate and degradation factors:
 - Nanoparticle: composition, molecular weight, crystallinity
 - Drug: nature, size, load
- Research on properties and safety
- Potential: 20x longer retention time
NEW DRUG DELIVERY: ANTIBODIES

- **number MØ → severity of synovitis**
- **Inflammatory MØ express folate receptor β (FRβ) – binds mAb coupled with an immunotoxin**
- **MØ removal → lower grades of inflammation**
- **14 d positive result**
- **No significant systemic effect**
PEG

- PEGylation
- Conjugation of polyethylene glycol
- For hydrophobic and small molecules
- Increase their molecular weight
- Delay systemic elimination
- An example: Corticosteroids
- < 700 Da
- PEGylation to increase the half life
- But rarely exceed 12h
LIPOSOME

- Spherical vesicle
- Coated with PEG = Long circulation “stealth” liposome
- Recognition of targeted cells = Immunoliposome
- Advantages:
 - Increase therapeutic activity
 - Reduce systemic complications
- Some limits...
Introduction

Chronic synovitis
 * Normal synovial tissue
 * Main causes of synovitis

Current therapy
 * Intra-articular Injection
 * Current treatment
 * Pharmacokinetics/pharmacodynamics/technical consideration

Therapies under development
 * New delivery systems
 * New molecules

Conclusion
TNF-α

- Inflammatory cytokine
 - Inflammatory and immune reactions
 - Neutrophil recruitment
 - VEGF
 - Co-stimulator:
 ★ Tc activation
 ★ Ab production

- Antagonists use to treat auto-immune diseases (RA)
- Clinical studies has been done: positive
- Costs vs. Effectiveness
- Side effects
VEGF

- Study links VEGF expression to IAT failure in RA
- Animal study: blocking VEGF → articular inflammation
- Current pilot: anti-VEGF antibody efficacy in recurrent hemarthroses for hemophilia patients
CONTENTS

- Introduction
- Chronic synovitis
 - Normal synovial tissue
 - Main causes of synovitis
- Current therapy
 - Intra-articular Injection
 - Current treatment
 - Pharmacokinetics/pharmacodynamics/technical consideration
- Therapies under development
 - New delivery systems
 - New molecules
- Conclusion
CONCLUSION

- Current therapies but not effective for all the patients

- New promising therapies
 - New delivery systems: nanoparticles, antibodies, PEG, liposomes
 - New target molecules: TNFα, VEGF

- More clinical trials need to be done…

- Other approaches: genetic and cell therapies
REFERENCES

- Vanniasinghe, Anne S., Veronika Bender, and Nicholas Manolios. «The Potential of Liposomal Drug Delivery for the Treatment of Inflammatory Arthritis».
- Vanniasinghe, Anne S., Veronika Bender, and Nicholas Manolios. «The Potential of Liposomal Drug Delivery for the Treatment of Inflammatory Arthritis».
- Nagai, Taku, Akira Kyo, Kazuhisa Hasui, Sonshin Takao, and Takami Matsuyama. «Efficacy of an Immunotoxin to Folate Receptor Beta in the Intra-Articular Treatment of Antigen-Induced Arthritis».
- Evans, Christopher H., Virginia B. Kraus, and Lori A. Setton. «Progress in Intra-Articular Therapy».
Thank you for your attention!