How to integrate biostatistics into the curriculum?

Krisztina Boda, Tibor Nyári, Ferenc Bari
Department of Medical Physics and Informatics, University of Szeged

Biostatitics courses held by the staff of the Department

- Biostatistics for pharmacy students, compulsory course, I. year, 1+1 hours/week lecture and practical, 1992-
- Biostatistics for medical students, elective course, IV-V. years, 2 hours/week 1994- (Hungarian) 1998- (English).
- Biostatistics for Ph.D. students, compulsory course, 2+1 hours/week, 1993-
- Biostatistics for applied mathematical students, compulsory course, 2+1 hours/week, 2005-
- Biomathematics and biostatistics for biology and ecology students, 2+2 hours/week, 2008-
- Medical Physics and Statistics. Compulsory course, for I. year medical students, biostatistics lecture 1 hour/week + elective practical 2 hours/week, 2010-

Former curriculum

- Earlier biostatistics was taught as a part of the subject „Biophysics". That time, students studied biostatistics during two months, in 3+2 hours/week, and the biostatistical module finished by a written test.
- The result of this test was added to the exam of biophysics.

From the year 2010/2011 biostatistics is taught by the staff of our Department as a part of the subject „Medical Physics and Statistics".

Main changes and challenges in the curriculum

- Medical physics and Biostatistics is taught parallel during the semester as a compulsory course.
- Exam (common): $2 / 3$ physics, 1/3 statistics -both parts should be at least passed!!!
- Lessons:
- Medical physics
- Lecture: 2 hours/week
- Practicals/seminars: 2 hours/week
- Biostatistics
- Lecture: 1 hour/week
- Practical: -
- The total number of lessons per week did not change
- Lecture: 3 hours/week
- Practicals: 2 hours/week
- But how to practice biostatistics?? Solution: „Biostatistical calculations" compulsory elective course, 2 hours/week

Main changes and challenges (cont.)

- Biostatistics
- Lecture: 1 hour/week
- Practical:
- A) nothing
- B) Biostatistical calculations" compulsory elective course, 2 hours/week
- How to present lectures so that students not choosing practicals could take the exam?
- How to present practicals so that students choosing practicals could take the exam more easily and better?

Principles of teaching biostatistics

- Theoretical background possibly precise but not too detailed
- We assume elementary mathematical knowledge at secondary school level (calculus?)
- Many practical examples understandable for everybody but possibly related to medicine
- Using manual calculations for simple elementary formulas on small number of cases and using statistical software, to find the appropriate ratio
- Interpretation of results of calculations
- By the end of the semester students recognise the importance of biostatistical knowledge

Lecture, requirements

- Give an overview about the basic biostatistical methods
- Precise enough but understandable
- Practical examples from the usual life, medical literature
- Students not choosing any practical, be able to take the final exam
- But students choosing the practical „Biostatistical calculation", let it be worth to listen the lecture, and let the exam more easy
- Give an outline to advanced biostatistical methods as well

Biostatistical calculations (elective practical), requirements

- The subject is designed to give basic biostatistical knowledge commonly employed in medical research and to learn modelling and interpreting results of computer programs (SPSS). The main purpose is to learn how to find the most appropriate method to describe and present their data and to find significant differences or associations in the data set.
- Attendance of the course facilitates the accomplishment of the obligatory course "Medical physics and statistics".
- Methods:
- Simple calculations manually and by computer
- Advanced or complicated calculations performed by software
- Interpretation of results
- Application the appropriate test to a given experimental design

Former experiences in teaching biostatistics

- The staff of our department is experienced in teaching biostatistics based on more than 20 years activity.

Biostatistics lecture syllabus

1. Introduction. Course requirements, training objectives, subject, structure. Introductory examples. Types of data.
2. Population and sample characteristics. Definitions, examples, distribution of a sample, measures of the center and variability, and their properties. Displaying data. Scatter plot.
3. Description of linear relationship: correlation and regression analysis. The equation of the best fitting line, the principle of least squares. Regression using transformations.
4. The basics of probability theory. Experiments, events, operations with events, the concept of probability, rules of probability calculus in special cases. Distribution of variables, some important distributions (uniform, binomial, normal).
5. Statistical estimation, confidence interval.. The standard error of mean. The aim and steps of hypothesis testing, one-sample t-test.
6. Paired t-test, two-sample t-tests. Assumptions. F test for testing equality of variances.
7. Statistical errors, the increase of Type I error, ANOVA models
8. Models of linear and nonlinear regression. The significance of the correlation coefficient, hypothesis tests for the coefficients of regression line.
9. Nonparametric tests using ranks.
10. Contingency table, observed and expected frequencies, degrees of freedom, the chisquare test, assumptions. Special case: a 2×2 table. Odds ratio, relative risk.
11. Diagnostic tests.
12. Survival analysis, life tables, Kaplan-Meier method.

Course material

- Damjanovich-Fidy-Szöllősi (eds): Medical Biophysics. Medicina, 2009.
- M.J. Campbell, D. Machin: Medical Statistics. A Commonsense Approach. John Wiley \& Sons Chichester-New York- Brisbane-Toronto-Singapore , 1993.
- Rice Virtual Lab in Statistics http://onlinestatbook.com/rvls.html
- Lecture notes

Q2 Legtöbbször látogatott（3）Bevezetés © Friss hirek Ti webmali．t－online．hu M Gmal：A Google－féle e－

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

University of Szeged，Faculty of Medicine，Faculty of Science and Informatics

Home \quad The department

Education
Research
News \＆events

LATEST NEWS

－Summer School in Angers（2011－07－12）
－Medical Physics oral exams（2011－08－18）
－Physics II．retake practicals（2011．06－08）
Dr．Dorottya Czövek was awarded an ERS grant
（2011－06－05）
－Physics II．practicals make－up labs（2011－05－04）

USEFUL LINKS

Summer School Szeged－ 2011
ETR
ETR CooSpace
－University phonebook
－Faculty of Medicine
University of Szeged
－Wolfram Alpha
－Mathmodel homepage

WHO IS ONLINE？

We have 2 guests and 1 member online

Home ，Education ，Handouts
回

Handouts

2010／2011（1 st semester）

Facuity of Medicine－Medical physics and statistics

Requirements
Medcical Physics curriculum
Questions to Practice（Prof．Ferenc Bari）
Lecture：
Medical physics lecture 1 －Introduction（Prof．Ferenc Bari）
Medical physics lecture 2 －Basic Mathematical Tools to describe Physiological Phenomena（Dr．János Karsai）
Medical physics lecture 3 －Mechanics of the human body（Prof．Ferenc Bari）
Medical physics lecture 4 －Mechanical oscillations，resonance（Prof．Péter Maróti）
Medical physics lecture 4 （handout）－Mechanical oscillations，resonance（Prof．Péter Maróti）
Medical physics lecture 5 －Mechanical waves（Prof．Péter Maróti）
Medical physics lecture 5 （handout）－Mechanical waves（Prof．Péter Maróti）
Medical physics lecture 6 －Optics（Dr．Katalin Variú）
Medical physics lecture 6－Optics（black and white）（Dr．Katalin Variú）
Medical physics lecture 7 －Temperature，its measurement，heat，heat transport（Prof．Ferenc Bari） Medical physics lecture 8 －Principles of fluid mechanics（Prof．Zoltán Hantos）
Medical physics lecture 9 －Physics of biological membranes，diffusion，osmosis（Dr．László Nagy）
Medical physics lecture 10 －Thermodynamics of transport processes（Dr．László Nagy）
Medical physics lecture 11 －Bioelectric phenomena（Prof．Ferenc Bari）
Medical physics lecture 13－Signals（Prof．Zoltán Hantos）
Practice：
Laboratory practice 1 －Anthropometric measurements
Laboratory practice 2－Force，work and power
Laboratory practice 3－Electromyography
Laboratory practice 4 －Acoustics
Laboratory practice 5 －Noninvasive measurement of arterial pressure Biostatistics：
Biostatistics lecture 1，2－Basic statistical concepts（Dr．Krisztina Boda）
Biostatistics lecture 3 －Correlation，regression（Dr．Krisztina Boda）
Biostatistics lecture 4 －The basics of probability theory（Dr．Krisetina Boda）
Biostatistics lecture 5 －Confidence intervals（Dr．Krisztina Boda）
Biostatistics lecture 6－Hypothesis tests，one sample t－test，paired t－test．（Dr．Krisztina Boda）
Biostatistics lecture 7 －Hypothesis tests，twoo－sample t－test．（Dr．Kristina Boda）
Biostatistics lecture 8 －Hypothesis tests，two－sample t－test，analysis of variance．（Dr．Krisztina Boda）

Biostatistical calculations syllabus

1. Introduction. Data sets, types of data, distribution of data, graphical presentations (frequencies, percentages, bar chart, histogram)
2. Summary measures (mean, standard deviation, median, mode, range, quartiles). Figures based on summary measures.
3. Mathematics: equation and graph of the line. Exponential and logarithm function, transformations. Displaying data. Scatter plot.
4. Calculation of simple probabilities and distributions. The use of standard normal table. Sketch of the normal curve and finding some probabilities given the mean and standard deviation
5. Confidence intervals, interpretation.
6. Test 1: descriptive statistics, probability theory.
7. Paired t-test by calculator and by software.
8. Two-sample t-tests. Assumptions. F test for testing equality of variances.
9. One-way ANOVA.
10. Correlation and linear regression
11. Chi-square tests
12. Tests based on ranks. Summary
13. Test 2. T-tests, correlation-regression, -chi-square test
14. Summary, preparation to the exam

Biostatistical calculations Compulsory elective practical course

- Practice: 2 lessons per week

Form of examination: practical mark Year/semester: 1st year, 1. semester Credits: 2

- The subject is designed to give basic biostatistical knowledge commonly employed in medical research and to learn modelling and interpreting results of computer programs (SPSS). The main purpose is to learn how to find the most appropriate method to describe and present their data and to find significant differences or associations in the data set.
Attendance of the course facilitates the accomplishment of the obligatory course "Medical physics and statistics".
- Data sets
- Data about yourself
- Real data of medical experiments
- Forms of testing: The students have to perform two tests containing practical problems to be solved by hand calculations and by a computer program (EXCEL, Statistica or SPSS). During the tests, use of calculators, computers (without Internet) and lecture notes are permitted. Final practical mark is calculated from the results of the two tests.

Forms of testing

- The students have to perform two tests containing practical problems to be solved by hand calculations and by a computer program (EXCEL, Statistica or SPSS). During the tests, use of calculators, computers (without Internet) and lecture notes are permitted. Final practical mark is calculated from the results of the two tests.
- Test 1. (40 points)
- Descriptive statistics, one problem to be solved manually and another to be solved by SPSS
- Test 2. (60 points)
- 1 manual calculation (paired t-test, significance of correlation, evaluation of a 2×2 contingency table)
- 1 test by SPSS given a data base (paired t-test, two-sample ttest, regression, chi-square test)
- Interpretation of the result of a given test (software output)

Data base

- Data about the students themselves. On the first lecture they fill in a questionnaire. The resulting data file contain all important types of variables.
- Data measured on physics practicals (anthropometric data, blood pressure, pulse, etc...)
- Data of earlier medical research
- Data file of scientific papers (downloaded)

Questionnaire

Data base about the students would like to find your data in the data base.

This questionnaire is an experiment. The resulting data will be written in a data base and will be evaluated on the practical lessons. Please fill in the empty spaces with the appropriate numbers. Please find some "nickname" (not longer than 15 letters) if you
Nickname: \qquad $\square$$\square \square \square$
Sex (Male-1 , Female-2)
Age in years:
Body height in centimetres:
Body mass in kilograms:
Body mass in kilograms three years ago:
Ideal body height in centimetres: \qquad
\square

1: I dont like to eat at all
2: I dont like to eat
3: indifferent
4: I like to eat
5: I like to eat very much
Eye colour ------------
1: blue
2 : green
3: grey
4: brown
5: black
What is your opinion about biostatistics? (1 :yes, 2 : no)
difficult
necessary
interesting

Are you pleased with using a statistical software? (1 :yes, $2:$ no)

Anthropometric data

Lecture-slides. Introduction

Lecture-slides. Summary measures

Measures of the center

- Mean:

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

- Mode: is the most frequent number
- Median: is the value that half the membe of the sample fall below and half abov In other words, it is 1 middle number whei the sample elements are written in numer order

Measures of variability (dispersion)

- The range is the difference between the largest r number
- The sta

Kiszina Boda

- Percent value bє
■ Quartile
- The var

Example

- Data: 124 1, in ascending order: 1124
- Range: max-min=4-1=3

Percentiles

- Quartiles:
- Standard deviation:

x_{i}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$
1	$1-2=-1$	1
1	$1-2=-1$	1
2	$2-2=0$	0
4	$4-2=2$	4
Total	0	6

Lecture-slides. T-test

Example from the medical literature

Differential Effect of Uro Normal Subjects and Patie

Melisas Lim, BBicmedSc; Sury Honient Andrew Koniman BSc, PaD:

Statistical Analysis

Data are expressed as mean t were analyzed by trend test. 1 analyzed overall by 2 -way, re son between groups for individ by Student's unpaired t test gender, were analyzed by X appropriate. A 2 -tailed probal statistically significant.

Compare the r The sample m caused by cha

Demoaraphic Indexes

How to

- If HO is true, the compu statistic has a t-distribut with 25 degrees of freer
- Then with 95% probabil t-value lies in the „acce| region"
- Check it: now $t=-1.059$
- The p -value is the shad area, $p=0.28$. The prob: of the observed test sta is or more extreme in ei direction when the null hypothesis is true.

How to get the t-value using statistical software - given sample size, sample mean and sample SD?

■ Using SPSS, t-test is performed on sample data. Given only sample characteristics, it is difficult to get t.value.

- Excel:

	Group I	Group II
N	14	13
Mean	50	56
SE	4	4
SD	14.96663	14.42221
Results		
Mean difference	-6	
SE of mean difference	5.66493	
Df		25
t-value		-1.05915
two-sided p		0.299659

Lecture slides. Use of the data of the students in the lecture

Answer to the motivated example (mean age of boys and girls)

Group Statistics					
	Sex	N	Mean	Std. Deviation	Std. Error Mean
Age in years	Male	84	21.18	3.025	330
	Female	53	20.38	3.108	427

- The mean age of boys is a litlle bit higher than the mean age of The standard deviations are similar.

- Comparison of variances (F test for the equality of variances): $p=0.741>0.05$, not significant, we accept the equality of variances.
- Comparison of means: according to the formula for equal variances $t=1.505$. $d f=135, p=0.135$. So $p>0.05$, the difference is not significar Although the experienced difference between the mean age of boys girls is 0.816 years, this is statistically not significant at 5\% level. W show that the mean age of boys and girls is different.

Significance of the correlation Other examples

Practical problem-sheets

Discrete variables: Distributions, Absolute and relative frequencies, column charts

1.1. Characterize the GENDER variable: GENDER (1=boy, 2=girl)

	Frequency	Relative frequency
Boy		
Girl		
Total		

Create a barchart! Make scale on y-axis!

1.2. Characterize the EDUCATIO(n) variable!

	Frequency	Relative frequency
No		
Primary school		
Secondary school		
University		
Total		

Create a barchart! Make scale on y-axis!
a barchart! Make scale on y-axis!
Frequency chart

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No | Primary | Secondary | University | Nelative frequency barchart |
| No | | Primary | Secondary | University |

1.3. Create an piechart using EDUCATIO(n) variable!

SPSS:
1.4. Open the SMALLQUEST.SAV data file! Repeat the characterization of both GENDER and EDUCATIO variables using SPSS commands!
1.5. Open the Breast cancer survival.sav data file! Characterize the discrete variables!

Exam

- Physics: test-exam, multiple choice
- Biostatistics: manual evaluation of an examsheet with the following parts:
- 5 theoretical questions
- 1 descriptive statistics problem
- 1 hypothesis test
- ONLY a given formula-sheet and calculator can be used

1. The two main types of variables
2. What is the relationship between the standard deviation (SD) and the variance?
3. The meaning and properties of the coefficient of correlation (r)
4. The meaning of a confidence interval
5. The principle of finding the equation of the regression line

Solve the following problems!

Total: 60 p.

1. 2.17. Given the following of the following small sample: X: $4 ; 1 ; 5 ; 5 ; 0$, calculate mean and standard deviation, and sketch a mean-SD chart:

20 p
Mean (5 p)
..................
Standard deviation (10 p) \qquad

Chart (5 p) \qquad
2. The following table shows the results of placebo and aspirin in an experiment, with the number of people in each treatment group who did and did not develop thromboses. Decide whether the aspirin had or had not effect on thrombus formation.

	Developed thrombi	Free of thrombi
Placebo	10	5
Aspirin	10	20

Find the value of the test statistic, and give your conclusion. (alfa=0.05, *2table=3.84)
Name of the test (2 p) \qquad
Null hypothesis (3 p).
Assumption (5 p).
Test statistic: (10 p)

Degrees of freedom: (5 p)
Decision about the significance: (10 p)
Interpretation: (5 p)

1. When is a distribution skewed to the right?
2. Calculation of the sample median
3. Properties of the normal distribution
4. Decision rules of the one-sample t-test
5. When to use nonparametric tests?

Solve the following problems!

Total: $\mathbf{6 0} \mathbf{~ p . ~}$

1. In a study, systolic blood pressure of 10 healthy women was measured. The mean was 119 , the standard error 0.664 . Calculate the 95% confidence interval for the population mean! $(a=0.05$, $\mathrm{t}_{\text {table }}=2.26$).:

Data (5 p):

Mean.
SE.
$\mathrm{t}_{\text {table }}=\ldots$
Lower limit (5 p)
Upper limit (5 p).
.........
2. On the physics practicals the waist circumference was measured. The measurement was repeated three times. The relationship of the first two measurements was examined by linear regression. Interpret the results below (coefficient of correlation, the significance of correlation . null hypothesis, t-value, p-value, the equation of the regression line.

40 p.

Model Summary			
R	RSquare	Adjusted RSquare	Std. Error of the Estimate
.980	.960	.960	2.267
The independent variable is Waist circumference 1.			

ANOVA
Sum of Squares df Mean Square F Sig. Regression 44733.495 1 44733.495 8707.197 .000 Residual 1849.511 360 5.138 Total 46533.07 361

	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
Waist circumference 1	. 960	. 010	. 980	93.312	. 000
(Constant)	3.061	. 832		3.678	. 000

Coefficient of correlation (5 p). \qquad . Meaning:
Null hypothesis for the significance of correlation: (5 p)
Test statistic (5 p). \qquad
p-value (5 p) \qquad Significance: (10 p)
Equation of the regression line: (5 p).

Report

Páciens neme:		TESTTÖMEG Átlag	TESTMAGA SSÁG Átlag	$\begin{gathered} \text { CSÍPŐ } \\ \text { KÖRFOGAT } \\ \text { Átlag } \end{gathered}$	DERÉK KÖRFOGAT Átlag	Csípőkörfogat /derékkörf ogat
fiú	N	181	181	181	181	181
	Mean	75.6972	178.8398	91.4751	86.0000	1.0717
	Std. Deviation	13.81377	7.26879	10.68622	10.50926	. 12710
	Minimum	50.00	158.00	61.00	65.00	. 74
	Maximum	129.00	201.00	126.00	121.00	1.42
lány	N	181	181	181	181	181
	Mean	59.7845	167.6133	88.6519	74.0000	1.2152
	Std. Deviation	8.09204	5.58914	9.75109	8.74960	. 18609
	Minimum	46.00	152.00	62.00	60.00	. 68
	Maximum	92.00	181.00	119.00	105.00	1.51
Total	N	362	362	362	362	362
	Mean	67.7409	173.2265	90.0635	80.0000	1.1434
	Std. Deviation	13.83021	8.57417	10.31250	11.37281	. 17460
	Minimum	46.00	152.00	61.00	60.00	. 68
	Maximum	129.00	201.00	126.00	121.00	1.51

Exam results

- The experiences of the first year are positive: the knowledge of the students was found to be satisfactory, and students had a favourable opinion about biostatistics.
- The exam mark from biostatistics was higher for those students who attended „biostatistical calculations" (3.25 ± 1.41) related to those who did not attend it (2.66 ± 1.44).
- We hope that using this method of teaching, biostatistical knowledge of the students will be deeper and they will use it successfully during their study or later in their usual life.

Exam results

Biostatistics exam mark, 1st trial * Attended biostatistical calculations?

Crosstabulation

			Attended biostatistical calculations?		Total
			NO	Yes	
Biostatistics exam mark, 1st trial	1	Count	48	63	111
		$\%$ within Biostatistics exam mark, 1st trial	43.2\%	56.8\%	100.0\%
	2	Count	32	57	89
		\% within Biostatistics exam mark, 1st trial	36.0\%	64.0\%	100.0\%
	3	Count	19	80	99
		\% within Biostatistics exam mark, 1st trial	19.2\%	80.8\%	100.0\%
	4	Count	35	88	123
		$\%$ within Biostatistics exam mark, 1st trial	28.5\%	71.5\%	100.0\%
	5	Count	20	96	116
		\% within Biostatistics exam mark, 1st trial	17.2\%	82.8\%	100.0\%
Total		Count	154	384	538
		\% within Biostatistics exam mark, 1st trial	28.6\%	71.4\%	100.0\%

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	25.621^{a}		4
Likelihood Ratio	25.772		4
Linear-by-Linear	18.829		1

a. 0 cells (.0\%) hav e expected count less than 5 . The minimum expected count is 25.48 .

Exam results

Group Statistics

	Attended biostatistical calculations?	N	Mean	Std. Dev iation	Std. Error Mean
Biostatistics exam	NO	154	2.66	1.448	.117
mark, 1st trial	Yes	384	3.25	1.405	.072

$p<0.001$, the difference is significant

Exam results

Descriptive Statistics
Dependent Variable: Biostatistics exam mark, 1st trial

Language	Attended biostatistical	Mean	Std. Dev iation	N
English	NO	2.15	1.361	66
	Yes	2.78	1.522	111
	Total	2.55	1.492	177
Hungarian	NO	3.27	1.353	44
	Yes	3.42	1.326	231
	Total	3.40	1.329	275
German	NO	2.80	1.424	44
	Yes	3.55	1.234	42
	Total	3.16	1.379	86
	NO	2.66	1.448	154
	Yes	3.25	1.405	384
	Total	3.08	1.442	538

$p<0.001$, the difference is significant

Tests of Between-Subjects Effects

Tests of Between-Subject
atistics exam mark, 1st trial
Dependent Variable: Biostatistics exam mark, 1st trial

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$108.390^{\text {a }}$	5	21.678	11.441	.000
Intercept	3305.381	1	3305.381	1744.488	.000
Language	66.204	2	33.102	17.470	.000
Biostatcalc	24.134	1	24.134	12.737	.000
Language * Biostatcalc	6.539	2	3.270	1.726	.179
Error	1008.011	532	1.895		
Total	6226.000	538			
Corrected Total	1116.401	537			

a. R Squared $=.097$ (Adjusted R Squared $=.089$)

Exam results

Descriptive Statistics
Dependent Variable: Biostatistics exam mark, 2nd trial

Language	Attended biostatistical	Mean	Std. Dev iation	N
English	NO	2.58	1.407	38
	Yes	2.48	1.379	52
	Total	2.52	1.384	90
Hungarian	NO	3.14	1.276	21
	Yes	3.50	1.149	104
	Total	3.44	1.174	125
German	NO	3.14	1.153	21
	Yes	3.90	.876	10
	Total	3.39	1.116	31
Total	NO	2.88	1.325	80
	Yes	3.20	1.305	166
	Total	3.10	1.318	246

$\mathrm{p}<0.001$, the difference is significant

Exam results

Exam trial how many times? * Attended biostatistical calculations? Crosstabulation

			Attended biostatistical calculations?		Total
			NO	Yes	
Exam trial how many times?	. 00	Count	0	18	18
		\% within Exam trial how many times?	.0\%	100.0\%	100.0\%
	1.00	Count	77	218	295
		\% within Exam trial how many times?	26.1\%	73.9\%	100.0\%
	2.00	Count	65	127	192
		\% within Exam trial how many times?	33.9\%	66.1\%	100.0\%
	3.00	Count	14	38	52
		\% within Exam trial how many times?	26.9\%	73.1\%	100.0\%
	4.00	Count	0	1	1
		\% within Exam trial how many times?	.0\%	100.0\%	100.0\%
Total		Count	156	402	558
		\% within Exam trial how many times?	28.0\%	72.0\%	100.0\%

Our plans

- Topics remain almost the same
- The exam will be also a test-exam from biostatistics
- Drawback
- impersonal
- Students must see erroneous statements
- Simple mistake in calculation causes fail of the question
- More difficult to check relationships
- Advantage
- objective
- Equal measure for everybody
- Allows big group of students
- Relatively small time
- Less examiner

Is biostatistics difficult?

év * A biostatisztika nehéz-e Crosstabulation

			A biostatisztika nehéz-e		Total
			igen	nem	
év	2000	Count	13	6	19
		\% within év	68.4\%	31.6\%	100.0\%
	2001	Count	13	6	19
		\% within év	68.4\%	31.6\%	100.0\%
	2002	Count	38	43	81
		\% within év	46.9\%	53.1\%	100.0\%
	2003	Count	40	40	80
		\% within év	50.0\%	50.0\%	100.0\%
	2004	Count	40	42	82
		\% within év	48.8\%	51.2\%	100.0\%
	2005	Count	30	50	80
		\% within év	37.5\%	62.5\%	100.0\%
	2006	Count	26	40	66
		\% within év	39.4\%	60.6\%	100.0\%
	2007	Count	16	59	75
		\% within év	21.3\%	78.7\%	100.0\%
	2008	Count	24	75	99
		\% within év	24.2\%	75.8\%	100.0\%
	2009	Count	18	44	62
		\% within év	29.0\%	71.0\%	100.0\%
	2010	Count	18	43	61
		\% within év	29.5\%	70.5\%	100.0\%
	2011	Count	28	37	65
		\% within év	43.1\%	56.9\%	100.0\%
Total		Count	304	485	789
		\% within év	38.5\%	61.5\%	100.0\%

Chi-Square Tests			
	Value	df	$\begin{gathered} \text { Asy mp. Sig. } \\ \text { (2-sided) } \end{gathered}$
Pearson Chi-Square	$47.800^{\text {a }}$	11	. 000
Likelihood Ratio	48.643	11	. 000
Linear-by-Linear Association	23.207	1	. 000
N of Valid Cases	789		

a. 0 cells (. 0%) hav e expected count less than 5 . The minimum expected count is 7.32 .

Bar Chart

Is biostatistics necessary?

év * Abiostatisztika szükséges-e Crosstabulation

a. 0 cells (.0\%) hav e expected count less than 5 . The minimum expected count is 7.37 .

Bar Chart

Is biostatistics interesting?

év * A biostatisztika érdekes-e Crosstabulation

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	46.555^{a}	11	.000
Likelihood Ratio	45.678	11	.000
Linear-by-Linear	12.886	1	.000
Association	830		
N of Valid Cases			

a. 0 cells (. 0%) hav e expected count less than 5 . The minimum expected count is 11.06 .

Bar Chart

A biostatisztika érdekes-e
\square igen
nem
év

Are you pleased to use SPSS on the practicals?

év * Örül-e a szoftver megismerésének Crosstabulation

			Örül-e a szof tv er megismerésének		Total
			igen	nem	
év	2000	Count	50	26	76
		\% within év	65.8\%	34.2\%	100.0\%
	2001	Count	50	26	76
		\% within év	65.8\%	34.2\%	100.0\%
	2002	Count	55	33	88
		\% within év	62.5\%	37.5\%	100.0\%
	2003	Count	61	23	84
		\% within év	72.6\%	27.4\%	100.0\%
	2004	Count	60	26	86
		\% within év	69.8\%	30.2\%	100.0\%
	2005	Count	54	33	87
		\% within év	62.1\%	37.9\%	100.0\%
	2006	Count	55	22	77
		$\%$ within év	71.4\%	28.6\%	100.0\%
	2007	Count	51	29	80
		\% within év	63.8\%	36.3\%	100.0\%
	2008	Count	73	28	101
		\% within év	72.3\%	27.7\%	100.0\%
	2009	Count	56	10	66
		\% within év	84.8\%	15.2\%	100.0\%
	2010	Count	42	19	61
		\% within év	68.9\%	31.1\%	100.0\%
	2011	Count	46	19	65
		\% within év	70.8\%	29.2\%	100.0\%
Total		Count	653	294	947
		\% within év	69.0\%	31.0\%	100.0\%

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	$14.546^{\text {a }}$	11	.204
Likelihood Ratio	15.505	11	.161
Linear-by-Linear	3.162	1	.075
Association	947		
N of Valid Cases			

a. 0 cells (.0\%) hav e expected count less than 5 . The minimum expected count is 18.94 .

What statistical software do you know?

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	884	92.3	92.3	92.3
dBaselll, IV, V, Excel	1	. 1	. 1	92.4
DOS, Norton Commander, Windows	1	. 1	. 1	92.5
DOS, Windows	1	. 1	. 1	92.6
Excel	17	1.8	1.8	94.4
EXCEL	1	. 1	. 1	94.5
Excel, SPSS	1	. 1	. 1	94.6
Excel, Statistic-For, Windows	1	. 1	. 1	94.7
Excel, Windows, Worl1	1	. 1	. 1	94.8
Excel, Word	1	. 1	. 1	94.9
Excel, Word, Paint, Power Poin	1	. 1	. 1	95.0
Excel, World	1	. 1	. 1	95.1
EXCEL, WORLD	1	. 1	. 1	95.2
Excel; dBase	2	. 2	. 2	95.4
exel,word	1	. 1	. 1	95.5
Mathelica, EXCEL, Word	1	. 1	. 1	95.6
mathematic	1	. 1	. 1	95.7
Microcoft	1	. 1	. 1	95.8
Ministat	1	. 1	. 1	95.9
MS Statistic	1	. 1	. 1	96.0
NC, DOS, Windows	1	. 1	. 1	96.1
Office meg ilyenek.	1	. 1	. 1	96.2
Qvakc 3; Medal of Havor Us Off	1	. 1	. 1	96.3
SAS	3	. 3	. 3	96.7
SPSS	12	1.3	1.3	97.9
SPSS,	1	. 1	. 1	98.0
SPSS, EXCEL	2	. 2	. 2	98.2
SPSS, SAS	1	. 1	. 1	98.3
SPSS,Mathlab, Excell	1	. 1	. 1	98.4
szövegszerkesztő, stratégia1,	1	. 1	. 1	98.5
Windows	5	. 5	. 5	99.1
Windows XP	1	. 1	. 1	99.2
Windows, DOS	2	. 2	. 2	99.4
Windows, Novell	2	. 2	. 2	99.6
Windows; Word; Power Point; Ma	1	. 1	. 1	99.7
Word; Excel	2	. 2	. 2	99.9
WORLD, EXCEL	1	. 1	. 1	100.0
Total	958	100.0	100.0	

Summary

- Teaching biostatistics during 4 months (instead two months) made possible to slightly expand the topics.
- On the practicals besides of some manual calculations, mainly the use and interpretation of a software was studied
- The data files were highly related to the physics practicals: measurements made on physics practicals were used on biostatistics lessons
- The exam consists also from two parts: failing biostatistics means failing the whole subject as well -> biostatistics has a greater respect.
„If had only one day left to live, I would live it in my statistics class: it would seem so much longer."
(http://davidmlane.com/hyperstat/humorf.html)

