How to integrate biostatistics into the curriculum?

Krisztina Boda, Tibor Nyári, Ferenc Bari Department of Medical Physics and Informatics, University of Szeged

Biostatitics courses held by the staff of the Department

- Biostatistics for pharmacy students, compulsory course, I. year, 1+1 hours/week lecture and practical, 1992-
- Biostatistics for medical students, elective course, IV-V. years, 2 hours/week 1994- (Hungarian) 1998- (English).
- Biostatistics for Ph.D. students, compulsory course, 2+1 hours/week, 1993-
- Biostatistics for applied mathematical students, compulsory course, 2+1 hours/week, 2005-
- Biomathematics and biostatistics for biology and ecology students, 2+2 hours/week, 2008-
- Medical Physics and Statistics. Compulsory course, for I. year medical students, biostatistics lecture 1 hour/week + elective practical 2 hours/week, 2010-

Former curriculum

- Earlier biostatistics was taught as a part of the subject "Biophysics". That time, students studied biostatistics during two months, in 3+2 hours/week, and the biostatistical module finished by a written test.
- The result of this test was added to the exam of biophysics.

From the year 2010/2011 biostatistics is taught by the staff of our Department as a part of the subject "Medical Physics and Statistics".

Main changes and challenges in the curriculum

- Medical physics and Biostatistics is taught parallel during the semester as a compulsory course.
- Exam (common): 2/3 physics, 1/3 statistics –both parts should be at least passed!!!

• Lessons:

- Medical physics
 - Lecture: 2 hours/week
 - Practicals/seminars: 2 hours/week

Biostatistics

- Lecture: 1 hour/week
- Practical: -
- The total number of lessons per week did not change
 - Lecture: 3 hours/week
 - Practicals: 2 hours/week
- But how to practice biostatistics?? Solution: "Biostatistical calculations" compulsory elective course, 2 hours/week

Main changes and challenges (cont.)

Biostatistics

- Lecture: 1 hour/week
- Practical:
 - A) nothing
 - B) Biostatistical calculations" compulsory elective course, 2 hours/week
- How to present lectures so that students not choosing practicals could take the exam?
- How to present practicals so that students choosing practicals could take the exam more easily and better?

Principles of teaching biostatistics

- Theoretical background possibly precise but not too detailed
- We assume elementary mathematical knowledge at secondary school level (calculus?)
- Many practical examples understandable for everybody but possibly related to medicine
- Using manual calculations for simple elementary formulas on small number of cases and using statistical software, to find the appropriate ratio
- Interpretation of results of calculations
- By the end of the semester students recognise the importance of biostatistical knowledge

Lecture, requirements

- Give an overview about the basic biostatistical methods
- Precise enough but understandable
- Practical examples from the usual life, medical literature
- Students not choosing any practical, be able to take the final exam
- But students choosing the practical "Biostatistical calculation", let it be worth to listen the lecture, and let the exam more easy
- Give an outline to advanced biostatistical methods as well

Biostatistical calculations (elective practical), requirements

- The subject is designed to give basic biostatistical knowledge commonly employed in medical research and to learn modelling and interpreting results of computer programs (SPSS). The main purpose is to learn how to find the most appropriate method to describe and present their data and to find significant differences or associations in the data set.
- Attendance of the course facilitates the accomplishment of the obligatory course "Medical physics and statistics".
- Methods:
 - Simple calculations manually and by computer
 - Advanced or complicated calculations performed by software
 - Interpretation of results
 - Application the appropriate test to a given experimental design

Former experiences in teaching biostatistics

 The staff of our department is experienced in teaching biostatistics based on more than 20 years activity.

Biostatistics lecture syllabus

- 1. Introduction. Course requirements, training objectives, subject, structure. Introductory examples. Types of data.
- 2. Population and sample characteristics. Definitions, examples, distribution of a sample, measures of the center and variability, and their properties. Displaying data. Scatter plot.
- 3. Description of linear relationship: correlation and regression analysis. The equation of the best fitting line, the principle of least squares. Regression using transformations.
- 4. The basics of probability theory. Experiments, events, operations with events, the concept of probability, rules of probability calculus in special cases. Distribution of variables, some important distributions (uniform, binomial, normal).
- 5. Statistical estimation, confidence interval.. The standard error of mean. The aim and steps of hypothesis testing, one-sample t-test.
- 6. Paired t-test, two-sample t-tests. Assumptions. F test for testing equality of variances.
- 7. Statistical errors, the increase of Type I error, ANOVA models
- 8. Models of linear and nonlinear regression. The significance of the correlation coefficient, hypothesis tests for the coefficients of regression line.
- 9. Nonparametric tests using ranks.
- 10. Contingency table, observed and expected frequencies, degrees of freedom, the chisquare test, assumptions. Special case: a 2x2 table. Odds ratio, relative risk.
- 11. Diagnostic tests.

11

- 12. Survival analysis, life tables, Kaplan-Meier method.
 - Summary, case-studies. Summer School - 2011

July 19

Course material

- Damjanovich-Fidy-Szöllősi (eds): Medical Biophysics. Medicina, 2009.
- M.J. Campbell, D. Machin: Medical Statistics. A Commonsense Approach. John Wiley & Sons Chichester-New York- Brisbane-Toronto-Singapore, 1993.
- Rice Virtual Lab in Statistics http://onlinestatbook.com/rvls.html
- Lecture notes

Summer School - 2011

13

July 19

Biostatistical calculations syllabus

- 1. Introduction. Data sets, types of data, distribution of data, graphical presentations (frequencies, percentages, bar chart, histogram)
- 2. Summary measures (mean, standard deviation, median, mode, range, quartiles). Figures based on summary measures.
- 3. Mathematics: equation and graph of the line. Exponential and logarithm function, transformations. Displaying data. Scatter plot.
- 4. Calculation of simple probabilities and distributions. The use of standard normal table. Sketch of the normal curve and finding some probabilities given the mean and standard deviation
- 5. Confidence intervals, interpretation.
- 6. Test 1: descriptive statistics, probability theory.
- 7. Paired t-test by calculator and by software.
- 8. Two-sample t-tests. Assumptions. F test for testing equality of variances.
- 9. One-way ANOVA.
- 10. Correlation and linear regression
- 11. Chi-square tests
- 12. Tests based on ranks. Summary
- 13. Test 2. T-tests, correlation-regression, -chi-square test
- 14. Summary, preparation to the exam

Biostatistical calculations Compulsory elective practical course

- Practice: 2 lessons per week
 Form of examination: practical mark
 Year/semester: 1st year, 1. semester
 Credits: 2
- The subject is designed to give basic biostatistical knowledge commonly employed in medical research and to learn modelling and interpreting results of computer programs (SPSS). The main purpose is to learn how to find the most appropriate method to describe and present their data and to find significant differences or associations in the data set. Attendance of the course facilitates the accomplishment of the obligatory course "Medical physics and statistics".
- Data sets
 - Data about yourself
 - Real data of medical experiments
- Forms of testing: The students have to perform two tests containing practical problems to be solved by hand calculations and by a computer program (EXCEL, Statistica or SPSS). During the tests, use of calculators, computers (without Internet) and lecture notes are permitted. Final practical mark is calculated from the results of the two tests.

Forms of testing

- The students have to perform two tests containing practical problems to be solved by hand calculations and by a computer program (EXCEL, Statistica or SPSS). During the tests, use of calculators, computers (without Internet) and lecture notes are permitted. Final practical mark is calculated from the results of the two tests.
- Test 1. (40 points)
 - Descriptive statistics, one problem to be solved manually and another to be solved by SPSS
- Test 2. (60 points)
 - 1 manual calculation (paired t-test, significance of correlation, evaluation of a 2x2 contingency table)
 - 1 test by SPSS given a data base (paired t-test, two-sample t-test, regression, chi-square test)
 - Interpretation of the result of a given test (software output)

Data base

- Data about the students themselves. On the first lecture they fill in a questionnaire. The resulting data file contain all important types of variables.
- Data measured on physics practicals (anthropometric data, blood pressure, pulse, etc...)
- Data of earlier medical research
- Data file of scientific papers (downloaded)

Questionnaire

Data base about the students you for your contribution:

This questionnaire is an experiment. The resulting data will be written in a data base and will be evaluated on the practical lessons. Please fill in the empty spaces with the appropriate numbers. Please find some "nickname" (not longer than 15 letters) if you would like to find your data in the data base.

Krisztina Boda

July 19

Nickname:
Sex (Male-1, Female-2)
Age in years:
Body height in centimetres:
Body mass in kilograms:
Body mass in kilograms three years ago: \Box \Box
Ideal body height in centimetres:
Ideal body mass in kilograms:
How do you like to eat? 1: I dont like to eat at all 2: I dont like to eat at all 3: indifferent 4: I like to eat 5: I like to eat very much Eye colour 1: blue 2: green 3: grey 4: brown 5: I like to eat
5: DIACK
difficult
necessary
Are you pleased with using a statistical software? (1 :yes, 2 : no) \Box
Have you heard about any statistical software? (1:yes, 2:no)

Summer School - 2011

🚉 QUEST2010.sav [DataSet1] - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities Window Help

1 : ID		1									Visible: 21 of	21 Variables
	ID	Sex	Age	Height	Mass	Mass3	Idealheight	Idealmass	Eat	Eye	Difficult	Necessary
1	1	Male	19	178	90				I like to eat very	brown		
2	2	Female	20	166	79	70	170	50	l like to eat	brown	no	no
3	3	Female	20	173	64	62	173	64	I like to eat very	brown	no	yes
4	4	Female	33	175	78	75	165	60	l like to eat	blue		yes
5	5	Female	25	160	53	53	165	48	l like to eat	brown	no	yes
6	6	Male	18	183	77	81	190	79	I like to eat very	brown	no	yes
7	7	Male	21	181	68	62	172	70	l like to eat	black		yes _
8	8	Male	18	188	81		188	89	l like to eat	black	yes	yes
9	9	Female	20	158	55	48	165	46	I like to eat very	brown	yes	yes
10	10	Male	19	173	68	55	180	73	l like to eat	brown	no	yes
11	11	Female	18	173	68	60	170	60	I like to eat very	green		yes
12	12	Female	22	158	53	53	163	48	I like to eat very	black	no	yes
13	13	Female	19	169	65	62	180	56	I don't like to eat	brown	yes	yes
14	14	Male	27	183	85	80	190	40	I like to eat very	green	no	yes
15	15	Female	20	159	55	55	163	50	l like to eat	black	yes	yes
16	16	Male	20	176	65	60	176	65	l like to eat	brown	no	yes
17	17	Female	22	170	55	54	165	47	I like to eat very	black	yes	yes
18	18	Female	19	166	52	48	169	54	l like to eat	brown	yes	no
19	19	Male	21	174	67	65	180	75	indifferent	brown	no	yes
20	20	Male	19	184	82	76			I like to eat very	brown	yes	yes
21	21	Female	19	164	54	50	164	54	I like to eat very	brown	yes	yes
22	22	Male	17	189	82	65	189	70	I like to eat very	green		yes
23	23	Male	20	181	80	72	181	76	I like to eat very	brown	no	no
24	24	Male	20	181	90	88	183	70	l like to eat	black		
25	25	Female	25	168	56	57	168	58	l like to eat	brown	no	no
26	26	Male	19	183	60	67	188	78	l like to eat	brown	yes	no
27	27	Female	25	165	48	55	170	50	indifferent	brown	no	yes
28	28	Female	20	162	48	45			indifferent	brown	no	no
29	29	Female	21	165	49	47	169	52	indifferent	brown	yes	no
30	30	Male	19	184	90	80	190	83	l like to eat	brown	yes	yes
31	31	Female	27	160	51	47	165	48	l like to eat	brown	yes	yes
32	32	Male	21	176	65	64	180	70	l like to eat	black	yes	yes
33	33	Female	29	162	46	46	175	55	l like to eat	green	no	yes
34	34	Male	19	174	85	78	178	83	l like to eat	blue	no	yes
35	35	Male	19	170	74	70	180	75	I like to eat very	brown	yes	yes 🗸
▲ ▶ ∖ Dat	ta View 🕻 Variable	View /			•					'		<u> </u>
							SPSS P	rocessor is ready				
🎒 Start	일 🧭 🥥 🔟	i 🔮 🤣 🔛 💾	0	otal Comman 🛛 👻 H	How to integra 🎴	akkredit_demet	Microsoft Powe	Education - Fo	🔜 🏩 Output1 [Docu	🚉 QUEST201	0.s	~ 🛃 🖳 🏂 16:09

QUEST2010.xls

_ & ×

Anthropometric data

🚉 Anthropometrics.sav [DataSet2] - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities Window Help

ean	92									Visible: 21 o	f 21 Variables
Massmean	MassSD	Mass1	Mass2	Mass3	sex	Heightmean	HeightSD	Height1	Height2	Height3	Hipmean
92.00	.00	92.3	92.3	92.3	female	180.00	.60	180.5	179.5	179.3	119.0
72.00	.10	71.7	71.6	71.6	male	174.00	.20	173.6	174.0	173.9	92.
48.00	1.00	49.0	47.0	48.0	female	165.00	.30	165.0	165.5	165.5	87.
75.00	.00	75.0	75.0	75.0	male	185.00	.10	185.0	184.9	185.0	80.
92.00	.20	91.9	92.3	92.0	male	176.00	.70	176.6	176.7	175.5	97.
50.00	.30	50.0	50.5	50.0	female	166.00	.00	166.0	166.0	166.0	88.
75.00	.90	75.5	76.3	74.5	male	181.00	1.00	181.6	180.0	181.7	88.
49.00	1.00	50.0	48.0	49.0	female	161.00	.70	161.1	160.0	161.2	70.
91.00	.60	90.9	90.0	91.0	male	181.00	.30	181.0	180.5	180.5	98.
56.00	1.00	56.0	57.0	55.0	male	180.00	1.00	179.0	181.0	180.0	81.
70.00	.20	69.5	69.9	69.5	female	169.00	.60	169.3	168.8	168.1	98.
60.00	.30	60.5	60.5	60.0	male	175.00	.30	174.5	175.0	175.0	83.
67.00	1.50	69.0	66.0	67.0	male	173.00	1.30	174.5	172.1	172.3	97.
90.00	.20	90.3	90.4	90.1	male	185.00	.70	185.5	185.7	184.4	90
88.00	.40	88.4	88.6	87.8	male	176.00	.20	176.3	176.1	176.5	100
87.00	.20	87.6	87.2	87.3	male	172.00	.50	172.9	172.3	171.9	97
104.00	.40	104.8	104.1	104.3	male	175.00	.40	174.6	175.4	175.3	111
75.00	.90	75.0	75.0	73.5	male	186.00	.60	185.5	186.6	186.3	83
70.00	.80	70.0	70.5	69.0	male	177.00	.40	177.2	177.1	177.8	89
83.00	.80	83.5	82.0	82.4	male	182.00	.30	182.2	181.7	181.8	98
57.00	.60	57.0	56.0	57.0	female	168.00	.20	167.5	167.6	167.9	77
63.00	.00	62.8	62.8	62.8	male	172.00	.20	171.9	171.5	171.5	91
63.00	.10	63.6	63.4	63.4	male	176.00	.40	176.0	176.2	175.4	97.
88.00	.30	87.8	87.2	87.6	male	180.00	.20	180.3	180.2	180.5	102
72.00	.20	72.5	72.3	72.1	male	177.00	.10	177.2	177.0	177.1	96
75.00	.10	75.2	75.1	75.1	male	182.00	.20	182.1	181.7	181.9	93
54.00	.20	53.9	53.5	53.5	female	163.00	.40	162.5	163.2	162.5	83
57.00	.10	56.9	57.0	56.9	female	164.00	.20	164.5	164.1	164.1	93
61.00	.10	60.6	60.7	60.8	female	170.00	.10	170.5	170.5	170.4	89
60.00	.50	59.0	59.5	60.0	female	177.00	.50	177.5	176.6	177.0	91
52.00	.00	52.1	52.1	52.1	female	172.00	1.00	171.2	173.0	171.5	80
56.00	.30	55.5	56.0	56.0	female	169.00	.00	169.0	169.1	169.0	86
66.00	1.00	67.0	65.0	66.0	female	173.00	.80	172.6	172.7	174.0	96
77.00	.20	77.5	77.1	77.4	male	181.00	.20	181.0	180.9	181.2	80.
56.00	.40	55.7	55.0	55.8	male	172.00	.30	172.0	172.5	172.3	81
view (Variable Vi	ew /			•			Processor is ready				
a 📣 👝 📼 📼	A					proor					
	(***_/ V 🛷 🔛 💾	9 39 🔛 💾 📀 💌 🔤 🛄 Ta	🦭 🖉 🎬 💾 📀 👿 🔡 Total Comman 🔯	🤍 🔅 🎆 💾 💽 👿 🛛 📔 Total Comman 🕅 2 Microsoft O 🔻 🔯	🥙 🕫 🔛 🕑 🐷 🔰 💾 Total Comman 🛛 📝 2 Microsoft O 🔻 📴 Microsoft Powe	SPSS I	SPSS Processor is ready SPSS Processor is ready	SPSS Processor is ready SPSS Processor is ready SPSS Processor is ready Comman 2 Microsoft O V All Microsoft Powe 2 Education - Fo 2 Output1 [Docu 2 QUEST2010.sz	SPSS Processor is ready SPSS Processor is ready SPSS Processor is ready	SPSS Processor is ready SPSS Processor is ready SPSS Processor is ready 2 Microsoft O Anthropomet

_ & ×

Lecture-slides. Introduction

Lecture-slides. Summary measures

Measures of the center

Mean:

- $\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{x_1 + x_2 + \ldots + x_n}$
- Mode: is the most frequent number
- Median: is the value that half the member of the sample fall below and half abov In other words, it is i middle number wher the sample elements are written in numer order

Lecture-slides. T-test

Example from the medical literature

Lecture slides. Use of the data of the students in the lecture

Answer to the motivated example (mean age of boys and girls)

Group Statistics									
	Sex	N	Mean	Std. Deviation	Std. Error Mean				
Age in years	Male Female	84 53	21.18 20.38	3.025 3.108	.330 .427				

 The mean age of boys is a litlle bit higher than the mean age of The standard deviations are similar.

			1	ndependent	Samples To	est			
		Levene's Equality of	Test for Variances			t-test fo	r Equality of M	leans	_
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	L
Age in years	Equal variances assumed	.109	.741	1.505	135	.135	.807	.536	
	Equal variances not assumed			1.496	108.444	.138	.807	.540	

- Comparison of variances (F test for the equality of variances): p=0.741>0.05, not significant, we accept the equality of variances.
- Comparison of means: according to the formula for equal variances t=1.505. df=135, p=0.135. So p>0.05, the difference is not significar Although the experienced difference between the mean age of boys girls is 0.816 years, this is statistically not significant at 5% level. We show that the mean age of boys and girls is different.

Biostat 9.

23

Practical problem-sheets

A questionnaire		Practice	
1. Identification number.	Discrete variables: Distribu	ations, Absolute and rel	ative frequencies, column charts
2.Gender			. 1)
1:male 2: female	1.1. Characterize the GENDER variabl	e: GENDER (1=boy, 2=)	girl). Relative frequency
3 Age(year)	Pov	Trequency	Relative nequency
A Education	Cirl	_	
	Tricil		
2: elementary	Total		
3: secondary			
4: university	Create a barchart! Make scale on y-axis	.!	
5.Body mass (kg)	Frequency chart	Relati	ive frequency barchart
6.Height (cm)			
7. Eye colour			
1: blue			
2: green			
3: grey			
4: brown			
5: black	Boy Girl	Bo	oy Girl
8. Hobby	Gender		Gender
sport 🗖			
music listening	1.2. Characterize the EDUCATIO(n) v	ariable!	
collecting stamps		Frequency	Relative frequency
dancing	No		
fine arts	Primary school		
	Secondary school		
Create variables using the questionnaire! Let's define the following variables (no more than 8 characters	University		
are vand for name of a variable):	Total		
1.ID 2.0ENDER (Nonlinial) 5.AGE (Quantitative) 4 EDUCATIO (Ordinal) 5 WEIGHT (Quantitative) 6 HEIGHT (Quantitative)			·
7 E COLOUR (Nominal) & SPOPT (Binary) 0 MILSIC (Binary) 10 STAMP (Binary)	Create a barchart! Make scale on y-axis	s!	
11 DANCE (Binary) 12 FINEART (Bináry) / MOSIC (Binary) 13 OTHER (Binary)	Frequency chart	Relati	ive frequency barchart
1.Drivel (Dinary) 12.1 iver (Dinaris Denotonious) 15.0 Hille (Dinary)			* -
Create this dataset using EXCEL.			
ID GENDER AGE EDUCATIO WEIGHT HEIGHT E_COLOUR SPORT MUSIC			
1.00 1.00 20.00 3.00 65.00 185.00 3.00 1.00 1.00			
2.00 2.00 1/.00 3.00 62.00 1/7.00 2.00 2.00 1.00			
4.00 2.00 28.00 4.00 62.00 176.00 4.00 2.00 1.00			
5.00 1.00 9.00 1.00 32.00 148.00 4.00 2.00 2.00 6.00 1.00 5.00 1.00 19.00 125.00 3.00 2.00 2.00	No Primary Secondary	University No	Primary Secondary University
7.00 2.00 26.00 3.00 70.00 166.00 4.00 2.00 2.00			
8.00 1.00 60.00 4.00 75.00 180.00 1.00 1.00 1.00	1.3. Create an piechart using EDUCAT	IO(n) variable!	
10.00 2.00 51.00 4.00 61.00 162.00 4.00 2.00 1.00	, U		
11.00 1.00 17.00 2.00 61.00 178.00 4.00 2.00 1.00	SPSS:		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4. Open the SMALLQUEST.SAV dat	ta file! Repeat the charact	terization of both GENDER and
14.00 2.00 10.00 1.00 40.00 135.00 1.00 2.00 1.00	EDUCATIO variables using SPSS com	mands!	
15.00 1.00 19.00 3.00 86.00 187.00 3.00 1.00 1.00 16.00 1.00 22.00 3.00 67.00 179.00 4.00 2.00 2.00	1.5. Open the Breast cancer survival.s	av data file! Characterize	the discrete variables!
17.00 1.00 25.00 3.00 103.00 186.00 4.00 1.00 1.00			
18.00 1.00 29.00 4.00 74.00 176.00 1.00 1.00 1.00 1.00 1.00			
951.0019.05 UMM 005 000 $4.00201.0$ 1.00			July 1
			July I

Exam

- Physics: test-exam, multiple choice
- Biostatistics: manual evaluation of an examsheet with the following parts:
 - 5 theoretical questions
 - 1 descriptive statistics problem
 - 1 hypothesis test
- ONLY a given formula-sheet and calculator can be used

EH	Biostatistics exam sample sheet A: Name:	: Date:
Give s	hort answer to the following questions!	40 p.
1.	The two main types of variables	
2.	What is the relationship between the standard deviation (SD) and the variar	nce?
3.	The meaning and properties of the coefficient of correlation (r)	
4.	The meaning of a confidence interval	
5.	The principle of finding the equation of the regression line	
Solve	the following problems!	Total: 60 p.
1. standa Mean Standa	2.17. Given the following of the following small sample: X: 4; 1; 5; 5; 0 rd deviation, and sketch a mean-SD chart: (5 p) ard deviation (10 p)	, calculate mean and 20 p
Chart	(5 p)	
2. Th in not	e following table shows the results of placebo and aspirin in an experiment, we each treatment group who did and did not develop thromboses. Decide wheth the effect on thrombus formation.	with the number of peop her the aspirin had or ha 40 p.

40	р.
	_

	Developed thrombi	Free of thrombi
Placebo	10	5
Aspirin	10	20

Find the value of the test statistic, and give your conclusion. (alfa=0.05, *2table=3.84) Name of the test (2 p).....

Null hypothesis (3 p).....

Assumption (5 p)..... Test statistic: (10 p).....

Degrees of freedom: (5 p)..... Decision about the significance: (10 p)..... Interpretation: (5 p)

Biostatistics exam sample sheet							
· · · · · · · · · · · ·							
•							
he 5, p)							

On the physics practicals the waist circumference was measured. The measurement was repeated three times. The relationship of the first two measurements was examined by linear regression. Interpret the results below (coefficient of correlation, the significance of correlation . null hypothesis, t-value, p-value, the equation of the regression line.
 40 p.

Sig.

.000

.000

	Model Summary									
	R	R Square	Adjusted R Square	Std. Error of the Estimate						
	.980	.960	.960	2.267						
1	T									

The independent variable is Waist circumference 1

ANOVA									
	Sum of Squares	df	Mean Square	F	Sig.				
Regression	44733.495	1	44733.495	8707.197	.000				
Residual	1849.511	360	5.138						
Total	46583.007	361							
The independent variable is Waist circumference 1.									

.960

3.061

Coefficients				
Unstand Coeffic	lardized cients	Standardized Coefficients		
В	Std. Error	Beta	1	

.010

.832

Coefficient of correlation (5 p)..... Meaning:....

.980

93.312

3.678

Null hypothesis for the significance of correlation: (5 p)

Test statistic (5 p).....

p-value (5 p).....

Waist circumference

(Constant)

Significance: (10 p)....

Summer School Interpretation (5 p):

July 19

				CSÍPŐ	DERÉK	
		TESTTÖMEG	TESTMAGA	KÖRFOGAT	KÖRFOGAT	Csípőkörfogat
Páciens neme:		Átlag	SSÁG Átlag	Átlag	Átlag	/derékkörf ogat
fiú	Ν	181	181	181	181	181
	Mean	75.6972	178.8398	91.4751	86.0000	1.0717
	Std. Deviation	13.81377	7.26879	10.68622	10.50926	.12710
	Minimum	50.00	158.00	61.00	65.00	.74
	Maximum	129.00	201.00	126.00	121.00	1.42
lány	Ν	181	181	181	181	181
	Mean	59.7845	167.6133	88.6519	74.0000	1.2152
	Std. Deviation	8.09204	5.58914	9.75109	8.74960	.18609
	Minimum	46.00	152.00	62.00	60.00	.68
	Maximum	92.00	181.00	119.00	105.00	1.51
Total	Ν	362	362	362	362	362
	Mean	67.7409	173.2265	90.0635	80.0000	1.1434
	Std. Deviation	13.83021	8.57417	10.31250	11.37281	.17460
	Minimum	46.00	152.00	61.00	60.00	.68
	Maximum	129.00	201.00	126.00	121.00	1.51

Report

- The experiences of the first year are positive: the knowledge of the students was found to be satisfactory, and students had a favourable opinion about biostatistics.
- The exam mark from biostatistics was higher for those students who attended "biostatistical calculations" (3.25±1.41) related to those who did not attend it (2.66±1.44).
- We hope that using this method of teaching, biostatistical knowledge of the students will be deeper and they will use it successfully during their study or later in their usual life.

Biostatistics exam mark, 1st trial * Attended biostatistical calculations? Crosstabulation

			Attended biostatistical calculations?		
			NO	Yes	Total
Biostatistics	1	Count	48	63	111
exam mark, 1st trial		% within Biostatistics exam mark, 1st trial	43.2%	56.8%	100.0%
	2	Count	32	57	89
		% within Biostatistics exam mark, 1st trial	36.0%	64.0%	100.0%
	3	Count	19	80	99
		% within Biostatistics exam mark, 1st trial	19.2%	80.8%	100.0%
	4	Count	35	88	123
		% within Biostatistics exam mark, 1st trial	28.5%	71.5%	100.0%
	5	Count	20	96	116
		% within Biostatistics exam mark, 1st trial	17.2%	82.8%	100.0%
Total		Count	154	384	538
		% within Biostatistics exam mark, 1st trial	28.6%	71.4%	100.0%

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	25.621 ^a	4	.000
Likelihood Ratio	25.772	4	.000
Linear-by-Linear Association	18.829	1	.000
N of Valid Cases	538		

a. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is 25.48.

Group Statistics

	Attended biostatistical				Std. Error
	calculations?	N	Mean	Std. Deviation	Mean
Biostatistics exam	NO	154	2.66	1.448	.117
mark, 1st trial	Yes	384	3.25	1.405	.072

p<0.001, the difference is significant

Descriptive Statistics

Dependent Variable: Biostatistics exam mark, 1st trial					
Language	Attended biostatistical	Mean	Std. Deviation	Ν	
English	NO	2.15	1.361	66	
	Yes	2.78	1.522	111	
	Total	2.55	1.492	177	
Hungarian	NO	3.27	1.353	44	
	Yes	3.42	1.326	231	
	Total	3.40	1.329	275	
German	NO	2.80	1.424	44	
	Yes	3.55	1.234	42	
	Total	3.16	1.379	86	
Total	NO	2.66	1.448	154	
	Yes	3.25	1.405	384	
	Total	3.08	1.442	538	

Estimated Marginal Means of Biostatistics exam mark, 1st trial

p<0.001, the difference is significant

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
Corrected Model	108.390 ^a	5	21.678	11.441	.000
Intercept	3305.381	1	3305.381	1744.488	.000
Language	66.204	2	33.102	17.470	.000
Biostatcalc	24.134	1	24.134	12.737	.000
Language * Biostatcalc	6.539	2	3.270	1.726	.179
Error	1008.011	532	1.895		
Total	6226.000	538			
Corrected Total	1116.401	537			

Tests of Between-Subjects Effects

July 19

Summer School - 2011

Descriptive Statistics

Dependent Variable: Biostatistics exam mark, 2nd trial					
Language	Attended biostatistical	Mean	Std. Deviation	Ν	
English	NO	2.58	1.407	38	
	Yes	2.48	1.379	52	
	Total	2.52	1.384	90	
Hungarian	NO	3.14	1.276	21	
	Yes	3.50	1.149	104	
	Total	3.44	1.174	125	
German	NO	3.14	1.153	21	
	Yes	3.90	.876	10	
	Total	3.39	1.116	31	
Total	NO	2.88	1.325	80	
	Yes	3.20	1.305	166	
	Total	3.10	1.318	246	

Estimated Marginal Means of Biostatistics exam mark, 2nd trial

p<0.001, the difference is significant

			Attended bi calcula	ostatistical tions?	
			NO	Yes	Total
Exam	.00	Count	0	18	18
trial how many		% within Exam trial how many times?	.0%	100.0%	100.0%
times?	1.00	Count	77	218	295
		% within Exam trial how many times?	26.1%	73.9%	100.0%
	2.00	Count	65	127	192
		% within Exam trial how many times?	33.9%	66.1%	100.0%
	3.00	Count	14	38	52
		% within Exam trial how many times?	26.9%	73.1%	100.0%
	4.00	Count	0	1	1
		% within Exam trial how many times?	.0%	100.0%	100.0%
Total		Count	156	402	558
		% within Exam trial how many times?	28.0%	72.0%	100.0%

Exam trial how many times?* Attended biostatistical calculations? Crosstabulation

Our plans

- Topics remain almost the same
- The exam will be also a test-exam from biostatistics
- Drawback
 - impersonal
 - Students must see erroneous statements
 - Simple mistake in calculation causes fail of the question
 - More difficult to check relationships
- Advantage
 - objective
 - Equal measure for everybody
 - Allows big group of students
 - Relatively small time
 - Less examiner

Is biostatistics difficult?

év * Abiostatisztika nehéz-e Crosstabulation

			A biostatisztika nehéz-e		
			igen	nem	Total
év	2000	Count	13	6	19
		% within év	68.4%	31.6%	100.0%
	2001	Count	13	6	19
		% within év	68.4%	31.6%	100.0%
	2002	Count	38	43	81
		% within év	46.9%	53.1%	100.0%
	2003	Count	40	40	80
		% within év	50.0%	50.0%	100.0%
	2004	Count	40	42	82
		% within év	48.8%	51.2%	100.0%
	2005	Count	30	50	80
		% within év	37.5%	62.5%	100.0%
	2006	Count	26	40	66
		% within év	39.4%	60.6%	100.0%
	2007	Count	16	59	75
		% within év	21.3%	78.7%	100.0%
	2008	Count	24	75	99
		% within év	24.2%	75.8%	100.0%
	2009	Count	18	44	62
		% within év	29.0%	71.0%	100.0%
	2010	Count	18	43	61
		% within év	29.5%	70.5%	100.0%
	2011	Count	28	37	65
		% within év	43.1%	56.9%	100.0%
Total		Count	304	485	789
		% within év	38.5%	61.5%	100.0%

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	47.800 ^a	11	.000
Likelihood Ratio	48.643	11	.000
Linear-by-Linear Association	23.207	1	.000
N of Valid Cases	789		

a. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is 7.32.

Bar Chart

Is biostatistics necessary?

év * A biostatisztika szükséges-e Crosstabulation

			A biosta szüksé		
			igen	nem	Total
év	2000	Count	41	5	46
		% within év	89.1%	10.9%	100.0%
	2001	Count	41	5	46
		% within év	89.1%	10.9%	100.0%
	2002	Count	67	16	83
		% within év	80.7%	19.3%	100.0%
	2003	Count	74	10	84
		% within év	88.1%	11.9%	100.0%
	2004	Count	66	18	84
		% within év	78.6%	21.4%	100.0%
	2005	Count	48	34	82
		% within év	58.5%	41.5%	100.0%
	2006	Count	54	18	72
		% within év	75.0%	25.0%	100.0%
	2007	Count	67	10	77
		% within év	87.0%	13.0%	100.0%
	2008	Count	93	7	100
		% within év	93.0%	7.0%	100.0%
	2009	Count	63	4	67
		% within év	94.0%	6.0%	100.0%
	2010	Count	52	9	61
		% within év	85.2%	14.8%	100.0%
	2011	Count	62	3	65
		% within év	95.4%	4.6%	100.0%
Total		Count	728	139	867
		% within év	84.0%	16.0%	100.0%

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	67.044 ^a	11	.000
Likelihood Ratio	61.962	11	.000
Linear-by-Linear Association	6.034	1	.014
N of Valid Cases	867		

a. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is 7.37.

Bar Chart

Is biostatistics interesting?

év * A bio statisztika érdekes-e Crosstabulation

			A biostatisztika érdekes-e		
			igen	nem	Total
év	2000	Count	23	14	37
		% within év	62.2%	37.8%	100.0%
	2001	Count	23	14	37
		% within év	62.2%	37.8%	100.0%
	2002	Count	42	38	80
		% within év	52.5%	47.5%	100.0%
	2003	Count	60	20	80
		% within év	75.0%	25.0%	100.0%
	2004	Count	64	19	83
		% within év	77.1%	22.9%	100.0%
	2005	Count	40	40	80
		% within év	50.0%	50.0%	100.0%
	2006	Count	45	22	67
		% within év	67.2%	32.8%	100.0%
	2007	Count	59	18	77
		% within év	76.6%	23.4%	100.0%
	2008	Count	82	19	101
		% within év	81.2%	18.8%	100.0%
	2009	Count	52	10	62
		% within év	83.9%	16.1%	100.0%
	2010	Count	46	15	61
		% within év	75.4%	24.6%	100.0%
	2011	Count	46	19	65
		% within év	70.8%	29.2%	100.0%
Total		Count	582	248	830
		% within év	70.1%	29.9%	100.0%

Chi-Square Tests

	Value	df	Asy mp. Sig. (2-sided)
Pearson Chi-Square	46.555 ^a	11	.000
Likelihood Ratio	45.678	11	.000
Linear-by-Linear Association	12.886	1	.000
N of Valid Cases	830		

a. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is 11.06.

Bar Chart

Are you pleased to use SPSS on the practicals?

Örül-e a szof tv er megismerésének Total iaen nem év 2000 Count 50 26 76 % within év 65.8% 34.2% 100.0% Count 2001 50 26 76 % within év 34.2% 65.8% 100.0% 2002 Count 33 55 88 % within év 62.5% 37.5% 100.0% 2003 Count 61 23 84 % within év 72.6% 27.4% 100.0% 2004 Count 60 26 86 % within év 69.8% 30.2% 100.0% 2005 Count 54 33 87 % within év 62.1% 37.9% 100.0% 2006 Count 55 22 77 % within év 28.6% 71.4% 100.0% 2007 Count 29 51 80 % within év 63.8% 36.3% 100.0% 2008 Count 73 28 101 % within év 72.3% 27.7% 100.0% 2009 Count 56 10 66 % within év 100.0% 84.8% 15.2% 2010 Count 42 19 61 % within év 68.9% 31.1% 100.0% 2011 Count 46 19 65 % within év 70.8% 29.2% 100.0% Total Count 653 294 947 % within év 69.0% 31.0% 100.0%

év * Örül-e a szoftver megismerésének Crosstabulation

Chi-Square Tests

		Value	df	Asy mp. Sig. (2-sided)
Pearson	Chi-Square	14.546 ^a	11	.204
Likelihoo	od Ratio	15.505	11	.161
Linear-b Associa	y-Linear tion	3.162	1	.075
N of Va	lid Cases	947		

a. 0 cells (.0%) hav e expected count less than 5. The minimum expected count is 18.94.

Bar Chart

Summer School - 2011

🔲 nem

What statistical software do you know?

meiyeket					
		Frequency	Percent	Valid Percent	Cumulative
Valid		884	92.3	92.3	92.3
vana	dBaseIII IV V Excel	1	1	1	92.0
	DOS Norton	1	. 1	. 1	52.4
	Commander, Windows	1	.1	.1	92.5
	DOS, Windows	1	.1	.1	92.6
	Excel	17	1.8	1.8	94.4
	EXCEL	1	.1	.1	94.5
	Excel, SPSS	1	.1	.1	94.6
	Excel, Statistic-For, Windows	1	.1	.1	94.7
	Excel, Windows, Worl1	1	.1	.1	94.8
	Excel, Word	1	.1	.1	94.9
	Excel, Word, Paint, Power Poin	1	.1	.1	95.0
	Excel, World	1	.1	.1	95.1
	EXCEL, WORLD	1	.1	.1	95.2
	Excel; dBase	2	.2	.2	95.4
	exel, word	1	.1	.1	95.5
	Mathelica, EXCEL, Word	1	.1	.1	95.6
	mathematic	1	.1	.1	95.7
	Microcoft	1	.1	.1	95.8
	Ministat	1	.1	.1	95.9
	MS Statistic	1	.1	.1	96.0
	NC, DOS, Windows	1	.1	.1	96.1
	Office meg ilyenek.	1	.1	.1	96.2
	Qvakc 3; Medal of Havor Us Off	1	.1	.1	96.3
	SAS	3	.3	.3	96.7
	SPSS	12	1.3	1.3	97.9
	SPSS,	1	.1	.1	98.0
	SPSS, EXCEL	2	.2	.2	98.2
	SPSS, SAS	1	.1	.1	98.3
	SPSS,Mathlab, Excell	1	.1	.1	98.4
	szövegszerkesztő, stratégia1,	1	.1	.1	98.5
	Windows	5	.5	.5	99.1
	Windows XP	1	.1	.1	99.2
	Windows, DOS	2	.2	.2	99.4
	Windows, Novell	2	.2	.2	99.6
	Windows; Word; Power Point; Ma	1	.1	.1	99.7
	Word; Excel	2	.2	.2	99.9
	WORLD, EXCEL	1	.1	.1	100.0
	Total	958	100.0	100.0	

. . . .

Summer School - 2011

Summary

- Teaching biostatistics during 4 months (instead two months) made possible to slightly expand the topics.
- On the practicals besides of some manual calculations, mainly the use and interpretation of a software was studied
- The data files were highly related to the physics practicals: measurements made on physics practicals were used on biostatistics lessons
- The exam consists also from two parts: failing biostatistics means failing the whole subject as well -> biostatistics has a greater respect.

"If had only one day left to live, I would live it in my statistics class: it would seem so much longer."

(http://davidmlane.com/hyperstat/humorf.html)