Course description

Informing students on course requirements

(In accordance with information and study materials available on CooSpace)

From September 2020

Programme: general medicine, master's (unified 1st and 2nd cycle)

Course: Introduction to informatics (compulsory elective)

Academic year/Semester: 1st year, 1st semester

Educator and contact details (e-mail): Dr. József Tolnai PhD, assistant professor, (tolnai.jozsef@med.u-szeged.hu)

Type of course: <u>lecture</u>/seminar/<u>practice</u>/laboratory

Weekly hours of the course: 1 lecture + 2 practices / week

Credit vale of the course: 3

Type of examination: final exam at the end of semester, practice exam, <u>other</u>: interim evaluation

Preliminary requirements (preliminary academic performance or completed course required to fulfill the purposes and requirements of the course): none

Purpose of course:

The **aim of the course** is to educate students in the use of modern information technologies for effective work in life sciences. The students will acquire practical knowledge and basic skills required in biomedical data processing, document management, presentation and in various areas of computer communication.

The **lectures** cover the basic concepts of medical informatics, the fundamentals of computer architecture, principles and functions of software applications, operating systems, computer networks and web-based applications. The lecture topics also include the concepts of data processing and presentation in life sciences, medical digital imaging, and innovative medical solutions such as telemedicine, medical application of 3D printing, virtual or augmented reality, and deep learning.

The aim of the **practical course** is to provide basic practical skills in electronic communication, computer-aided analyses of biomedical data, creating electronic documents and presentations in medical sciences, telemedicine and 3D printing.

Outcome requirements of the course (specific academic results to be established by the course):

Knowledge	Ability	Attitude	Autonomy- responsibility
Knows the basic	Able to determine	Open to IT news, software/hardware.	Uses IT hardware
concepts of IT: the	the hardware and		tools and new
basic components	software parameters		software with
of computer	(capacity, type,		guidance.

architecture, the concepts, computer types and structure, development history of hardware, software, and operating systems.	version, etc.) of the IT devices he/she uses and set the basic parameters.		
Knows the principles of computer networks, transmission media, communication speed, grouping of networks (by size, topology, role of computers), the concept of network protocol, Internet addressing (IP address, domain name, structure, etc.).	Uses computer networks consciously.	Recognizes the benefits of info- communication networks.	Chooses the most effective telecommunication methods independently, with responsibility.
Familiar with Internet services and is aware of the privacy policies.	Uses web browsers and web-based services with appropriate privacy policies.	Uses web-based services in a competent manner.	Chooses the most effective Internet services independently, with responsibility.
Knows malicious software, knows the concept of a computer virus, its types, infection pathways, and ways of protection.	Able to perform a backup, assess computer virus protection. Recognizes a computer virus infection.	Knows the importance of taking appropriate security measures against computer viruses.	Uses IT tools responsibly, is aware of the potential dangers.
Knows the essence of cloud-based computing, the types and benefits of cloud-based services, and the gist of cloud-based computing.	Able to use cloud- based services.	Recognizes the importance of cloud- based data storage and applications, and the benefits of using them.	Open to use cloud- based services on his/her own.
Knows the types of health data (visual and textual), the ways in which they are stored, displayed and processed. Has knowledge about integrated hospital information systems, medical imaging networks, and ethical, security,	Able to make statistical analyses and graphs of basic health data in a spreadsheet application and use them for analysis, essays, and lectures.	Knows how to process health data with a computer and also the security rules of data management.	Manages patient data with competence and responsibility.

and logal issues			11
and legal issues related to the data.			
Knows the basic	Able to use basic	Onon to	Decemized the
concepts, methods,	telemedicine tools,	Open to telemedicine	Recognizes the need to integrate
tools and current	to measure	applications for use	telemedicine into
implementations of	physiological	and development of	the health care
telemedicine.	signals, to send and	tools.	system and seeks
	to interpret	10010.	to do so individually
	measured data.		or in groups to
			reduce waiting lists
			and specialist
			workloads.
Knows effective and	Able to make	Open for the use of	Creates and
modern	appropriate	familiar presentation	presents his/her
presentation	presentations, with	techniques and	electronic
techniques and	transitions,	strives to produce	presentations
principles of	animations, timings,	consistent-looking,	independently.
presentation.	and slide masters in	easy-to-follow	
	presentation	presentations.	
Knows the basic	software. Creates, modifies,	Strives to apply the	Solves word
typographic	and applies styles in	typographic	processing and
concepts for	a given word	principles to the	document
document editing	processor, inserts	production of	management tasks
(line, paragraph,	graphics, generates	sophisticated and	independently.
page, indent, space,	table of contents, an	easy to follow	
page break, section	index, creates a	electronic and	
break, footer,	bibliography,	paper-based	
header), and	manages cross-	documents.	
general document	references, and		
editing principles.	footnotes.		
Knows the basic	Able to recognize	Open to medical	
principles of 3D	types of 3D printers. Understands their	applications for 3D	
printing with FDM	basic working	printers.	
technology, their	principles.		
medical applications			
and the basics of			
bioprinting			
technology.			
Knows the	Recognizes VR and	Open to innovative	Manages simpler
technology bases of	AR devices,	medical applications	VR and AR devices
virtual (VR) and	understands how	of virtual and	and applications
augmented reality	they work, and how	augmented reality.	independently.
(AR) as well as their	to use them		
uses in modern			
medicine.		Open to inner ative	Decemizes the
Knows the basic		Open to innovative	Recognizes the
principles of deep learning		medical applications of deep learning	importance of deep learning solutions.
technologies and		technologies.	Carriing Solutions.
their medical			
applications.			
	I	1	1

Topics:

Topics of the lectures

- Informatics revolutionized medicine and medical research
- Computer architecture, from personal computers to supercomputers and smart devices
- Computer software, Operating Systems, viruses
- Medical image processing
- Computer networks
- Internet, cloud computing and data security
- Data presentation
- Telemedicine
- Medical applications of 3D design and printing
- 3D bioprinting
- Medical applications of virtual and augmented reality
- Deep Learning, AI for medicine

Topics of practices

- Evaluation of medical data with spreadsheets (input, validation, references, calculations, functions, basic statistics, charts, sorting, filtering, large tables, regression, pivot table, etc.)
- Creating scientific presentation (PowerPoint, Prezi, Mentimeter)
- Medical data on the web, creating online medical surveys and forms
- Documents, formatting large documents (styles, table of contents, figures and captions, list of figures, etc.), advanced document editing (header, footer, footnote, endnote, cross reference, references, etc.)
- Telemedicine and 3D printing in practice

Supporting methods to achieve learning outcomes:

In the lectures we use a frontal form of work (explanation, presentation). In the practices, exercises are done as frontal work (projected task solution, explanation, questioning, discussion) followed by individual or group work.

We help students with their own personalized learning through the use of practice materials uploaded to CooSpace and self-developed e-learning materials.

Evaluation of the acquisition of expected learning outcomes:

Attendance of the lectures is strongly recommended, downloading lecture slides cannot substitute for the participation at the lecture. There is no end-semester final exam. The course ends in a five-step evaluation.

Attendance at the practices is obligatory. Completion of the practical course is certified by the instructor's signature. The **prerequisites for this signature** are attending them and writing the pass level of mid-term tests. Practices can be made

up by students on their own with tutorials and e-learning materials uploaded to Coospace. The absence shall be certified in accordance with faculty and university regulations.

During the semester student have to pass **two practical tests** (**each with maximum of 100 points**), including a theoretical (25%) and a practical part (75%). A **maximum of 10 bonus points** can be awarded by the practical teacher for individual work. **Further 2 points/lecture** can be awarded for a successful Mentimeter test at the end of each lecture.

Retake is possible at the end of the semester on the last practice.

Grades of the course are determined as follows:

- 0–100 points: failed (1)
- 101–125 points: passed (2)
- 126–150 points: accepted (3)
- 151–175 points: good (4)
- 176–200 points: excellent (5)

Mandatory reading list

- Uploaded teaching materials
- Annotated lecture presentations

Recommended reading list:

- The webpage of Microsoft Office: http://office.microsoft.com
- Office help and support webpage: https://support.office.com

Indicating course requirements on CooSpace scene (summary)

Description (public):

The **aim of the course** is to educate students in the use of modern information technologies for effective work in life sciences. The students will acquire practical knowledge and basic skills required in biomedical data processing, document management, presentation and in various areas of computer communication.

The **lectures** cover the basic concepts of medical informatics, the fundamentals of computer architecture, principles and functions of software applications, operating systems, computer networks and web-based applications. The lecture topics also include the concepts of data processing and presentation in life sciences, medical digital imaging, and innovative medical solutions such as telemedicine, medical application of 3D printing, virtual or augmented reality, and deep learning.

The aim of the **practical course** is to provide basic practical skills in electronic communication, computer-aided analyses of biomedical data, creating electronic documents and presentations in medical sciences, telemedicine and 3D printing.

Requirements:

Attendance of the lectures is strongly recommended, downloading lecture slides cannot substitute for the participation at the lecture. There is no end-semester final exam. The course ends in a five-step evaluation.

Attendance at the practices is obligatory. Completion of the practical course is certified by the instructor's signature. The **prerequisites for this signature** are attending them and writing the pass level of mid-term tests. Practices can be made up by students on their own with tutorials and e-learning materials uploaded to Coospace. The absence shall be certified in accordance with faculty and university regulations.

During the semester student have to pass **two practical tests** (each with maximum of 100 points), including a theoretical (25%) and a practical part (75%). A maximum of 10 bonus points can be awarded by the practical teacher for individual work. Further 2 points/lecture can be awarded for a successful Mentimeter test at the end of each lecture.

Retake is possible at the end of the semester on the last practice.

Grades of the course are determined as follows:

- 0–100 points: failed (1)
- 101–125 points: passed (2)
- 126–150 points: accepted (3)
- 151-175 points: good (4)
- 176–200 points: excellent (5)

Topics:

Topics of the lectures

- Informatics revolutionized medicine and medical research
- Computer architecture, from personal computers to supercomputers and smart devices
- Computer software, Operating Systems, viruses
- Medical image processing
- Computer networks
- Internet, cloud computing and data security
- Data presentation
- Telemedicine
- Medical applications of 3D design and printing
- 3D bioprinting
- Medical applications of virtual and augmented reality
- Deep Learning, AI for medicine

Topics of practices

- Evaluation of medical data with spreadsheets (input, validation, references, calculations, functions, basic statistics, charts, sorting, filtering, large tables, regression, pivot table, etc.)
- Creating scientific presentation (PowerPoint, Prezi, Mentimeter)
- Medical data on the web, creating online medical surveys and forms
- Documents, formatting large documents (styles, table of contents, figures and captions, list of figures, etc.), advanced document editing (header, footer, footnote, endnote, cross reference, references, etc.)
- Telemedicine and 3D printing in practice