Simplified User Manual for the Biopac® Student Lab software

Department of Medical Physics and Informatics University of Szeged, Hungary

First Edition 2015

1. Welcome!

Welcome to the simplified user manual for the Biopac® Student Lab *PRO*® software. This manual has been specially written for students who participate at the medical physics laboratory practices at the University of Szeged, Hungary. It contains all the information that you will need for being prepared for handling the Biopac® Student Lab *PRO*® software. This document is built up step-by-step, and contains cross-references for the parts which you may need to complete a specific task. Important: this manual is intended to be used together with the syllabi of the laboratory practices!

Though the Biopac® Student Lab *PRO*® software is not available for free, you can download the Biopac® Student Lab Analysis software for free, which has (almost) all of those features, which you will need for being prepared for the laboratory practices. To do so, you will have to register (or log in, if you already registered) at the <u>http://www.biopac.com/BSL-Analysis.asp</u> site. *Registration is totally free*. To review the similarities and differences between the two softwares, please refer to section <u>9 'Similarities and differences between Biopac® Student Lab *PRO*® and Biopac® Student Lab Analysis'.</u>

2. Contents

1.	We	lcom	e!	.1
2.	Cor	ntents	s	.2
3.	Use	er inte	erface of the Biopac® Student Lab PRO®	.4
	3.1.	Star	ting the Biopac® Student Lab PRO®	.4
	3.2.	Fan	niliarize yourself with the user interface of the Biopac® Student Lab PRO®	.4
	3.2.	.1	Menu structure of the main window	.6
4.	Ope	ening	g, evaluating and saving measurements	.9
4	I .1.	Ope	ening measurements	.9
4	1.2.	Sav	ing measurements	.9
2	1.3.	Mea	asurement windows	.9
4	1.4.	Eva	luating measurements	10
	4.4.	.1	Selection, control, and navigation tools of measurement windows	10
	4.4.	.2	Channels and measurements	12
5.	Ma	rkers		16
6.	Rec	ordi	ng	18
6	5.1.	Per	forming recordings	18
6	5.2.	Cal	ibration	18
6	5.3.	Plac	cing markers	19
7.	Dat	a ma	nipulation	21
7	7.1.	Bas	ic operations with waveforms and channels	21
	7.1.	.1	Duplicating waveforms	21
	7.1.	.2	Renaming channels	21
	7.1.	.3	Changing the unit of the vertical axis'	21
	7.1.	.4	Rescaling the horizontal axis	22
	7.1.	.5	Rescaling the vertical axis'	23
	7.1.	.6	Removing waveforms	24
	7.1.	.7	Clearing waveforms	24
7	7.2.	Tra	nsformations: advanced tools for data manipulations	25
	7.2.	.1	Smoothing	25

	7.2.	.2 Filtering with low-pass filter	25
	7.2.	.3 Filtering with high-pass filter	26
	7.2.	.4 Fourier transformation	27
8.	Cus	stomization of the appearance of the information	
	8.1.	Toolkit buttons of the main window	
9. Ar	Sim nalysis	nilarities and differences between Biopac® Student Lab <i>PRO</i> ® and Biopac® St	tudent Lab 31
	9.1.	Similarities	31
	9.2.	Differences	32
	9.3.	Restrictions	32

3. User interface of the Biopac® Student Lab PRO®

3.1. Starting the Biopac® Student Lab PRO®

To start the Biopac® Student Lab *PRO*®, first, find the icon of BSL PRO, and then double-click on it. The software might indicate that there is no MP36 unit connected to the computer.

ſ	Biopac Student Lab PRO®
	The Program cannot find the MP36 hardware.
	- To analyze saved data (using software only), click Analyze Only.
	- To record data: - check connections - turn the MP36 OFF - turn the MP36 ON and wait for the Busy light to turn off - click Retry
	Analyze Only 💦 Retry

If this happens, do not worry, just click on the 'Analyse only' button.

3.2. Familiarize yourself with the user interface of the Biopac® Student Lab PRO®

Right after startup, the main window of the Biopac® Student Lab *PRO*® looks like the image below. It can contain one...

💊 Biopac Student	Lab PRO®			
File Edit Transf	form Display Wind	dow MP36 H	lelp 🗃 🏼 Σ	
Untitled1	SC SC	None	SC	None
0.00	2.00 s	4.00 seconds	6.00	► I Q ► Start ► ©
Ready, Grid Off		Chart	Memory	

... or even more measurement windows.

Each measurement windows have their own selection, magnification and measurement tools (see section 4.4.1 'Selection, control, and navigation tools of measurement windows' and 4.4.2 'Channels and measurements').

3.2.1 Menu structure of the main window

The main menu consists of seven menu points, which contain a variety of sub-menus. Some submenus contain more sub-menus. This is denoted by the \blacktriangleright symbol right to the name of the submenu. In the further parts of this manual, the menu points are type casted in **bold italic** style, and the navigation in the menu is denoted by the \rightarrow symbol, e. g. **File** \rightarrow **Open...** means that you should click on the 'File' in the main menu, navigate to 'Open...', and click on it.

)(File Edit Transform	In the File menu, you can find		
<	New	functions which can help you in the		_
F	Open	general handling (opening, closing,	Edit Transform Display	У
	Close	saving, etc.) of measurement	Can't Undo	
l	Save	windows.	Cut	
	Save As		Сору	
			Paste	
	Print		Clear	
1	Printer Setup		Clear All	
H	Preferences		Insert Waveform	
	1 C:\Users\lab\Docu		Duplicate Waveform	
	2 C:\temp\MEASURE		Select All	
ł	3 C:\temp\MEASURE		- Remove Waveform	
		In the Edit menu, you can find useful		
1	4 IN:\FF1.acq	tools for the general handling of	Clipboard	
,	Quit	waveforms (curves).	Journal	
	_			_

Transform	Display Wind	dow	In the Transform menu, you	Disp	olay Window MP36
Digital	ilters	•	can find a variety of	6	Tile Waveforms
Math F	unctions	•	transformation functions,		Autoscale Waveforms
Templa	te Functions	•	which can help in the post-		Optimize Ranges
Integral			processing and evaluation of		Overlap Waveforms
Derivati	ve		signals.	1	Compare Waveforms
Integrat	e				Autoscale Horizontal
Smooth	ing			1	Zoom Pack
Differer	ice				Zoom Eonward
Histogr	am				Poset Chart Display
Resamp	le				Set Wave Desition
Express	on				Wave Color
Wavefo	rm Math				Wave Color
FFT					Show
Find Pe	ak				Statistics
Find Ne	xt Peak		The Display menu makes one	1	Size Window
Find All	Peaks		able to modify the display		
Find Ra	te		properties of waveforms		Cursor Style
			(curves).		Refresh Graph

He

In the Window menu, you can arrange the measurement windows.

In the MP36 menu, one can set up the properties of acquisition.

Help	2N	-	In th	e He
	PRO Lessons from Web		can	find
	Open BSL PRO Tutorial		detai	led h
	Open BSL PRO Manual		of	the
	Open BSL Hardware Guide		hard	ware,
	Support Materials from We	b	and t	oolki
	About Biopac Student Lab			
_	25	00		

in the Help menu, you can find the whole detailed help material of the Biopac® nardware, software, and toolkits.

4. Opening, evaluating and saving measurements

4.1. Opening measurements

Go to *File* \rightarrow *Open...*, and then select the file in the dialogue window. There are basically 2 file types, which you will use:

- ACQ: Acquisition file; this is the standard file type of Biopac® Student Lab PRO®
- Ldd: Lesson file; you will also frequently use this file type, especially if you have to perform measurements during the laboratory practice

4.2. Saving measurements

To simply save a measurement, go to $File \rightarrow Save$. If you would like to save your measurement with another name, go to $File \rightarrow Save as...$, then select the folder which you would like to use for saving and type a name for your file.

4.3. Measurement windows

A measurement window can contain one or more *waveforms*. A waveform is actually a curve. Normally, each waveform is presented in its own *channel*. In the figure below there are five waveforms in five channels.

Each channel has its own vertical scale, however, they share a common horizontal scale. This is very important to keep in mind, since magnification (4.4.1 'Selection, control, and navigation tools of measurement windows') only affects the vertical scale of the channel of the magnified waveform, however, it modifies the *horizontal scale of all channels*, and, as a result, modifies the appearance of all waveforms.

4.4. Evaluating measurements

4.4.1 Selection, control, and navigation tools of measurement windows

The most basic tools of the measurement window can be found in its right lower corner. The **NIO** buttons control the behaviour of the cursor during work.

10

By pressing **k**, you can easily navigate throughout the waveforms (curves). This tool becomes handy if you select a part of the waveforms, and you want to review another part of the registered data, and you would like to preserve your selection.

By pressing \Box , you chose the selection mode. If you click and draw with the cursor, you can select a specific part of the waveforms.

As a result, you can perform measurements within the marked area, which are, in this sample image, the minimum and maximum values of the red waveform, and the last value of the selection, respectively (4.4.2 'Channels and measurements').

The \bigcirc button activates zoom selection mode. In this mode you can zoom (magnify) a specific part of a waveform. To do so, simply select that part of the waveform (by clicking and drawing), which you would like to magnify. This tool becomes useful if you have to precisely mark a tiny range of the waveforms. If you get lost, use the \bigcirc and \bigcirc buttons in the main toolbar (in this order). Please refer to <u>8.1 'Toolkit buttons of the main window'</u>. Alternatively, you can right-click on the waveform, and select 'Zoom back' as many times as needed.

4.4.2 Channels and measurements

To perform a measurement, you have to use the measurement toolbar:

To define the measurement, that you would like to perform, first choose the channel by clicking on the channel selection button, then, click on the channel, that you would like to use.

To define the measurement that you would like to perform, click on the measurement selection button and select the measurement.

There are several types of measurement:

- None: no measurement is performed
- Value: the actual value of the waveform at the cursor (or at the end of the selection)
- Delta: the difference between the values of the waveform at the beginning and the end of the selection
- P-P: peak-to peak; the difference between the maximal and the minimal value of the waveform within the selection

- Max: the maximal value of the waveform within the selection
- Min: the minimal value of the waveform within the selection
- Mean: the average of the values of the curve within the selection
- Stddev: the standard deviation of the values of the curve within the selection
- Integral: the sum of the values of the curve within the selection
- X-axis: T: the horizontal position of the cursor (or the end of selection)
- Delta T: the horizontal difference between the end and the beginning of the selection
- T @ Max: the position of the maximum of the curve within the selection
- T @ Min: the position of the minimum of the curve within the selection

The measured value can be seen right to the measurement selection button. Please keep in mind that most of the measurements function *only if a part of the waveforms is selected*. However, the 'Value' and the 'X-axis: T' measurements show the value at the cursor or at the value of the last point of the selection.

5. Markers

Markers are very useful either if a signal should be divided into multiple parts, or, if some events have to be indicated. The marker area is in the top section of the measurement window.

Normally, the position of the marker is indicated by \blacksquare . However, if a marker has been selected, it its symbol is turning to \clubsuit . The text area shows the name of the selected marker. The \checkmark and \blacktriangleright buttons can be used for stepping through the markers one by one. By pressing \checkmark , one can open the marker menu.

Try these buttons and see what happens.

6. Recording

6.1. Performing recordings

The \blacksquare indicator shows if the system is able to perform a recording. If there is no MP36 unit connected to the computer, this area looks like \blacksquare .

By pressing the Start button, you can start recording with the MP36 unit. During recording, the indicator turns to 😤, indicating that there is a communication between the computer and the MP36 unit.

If you would like to stop the recording, simply press Stop . By pressing Start again, you can continue the recording.

6.2. Calibration

To calibrate the system, first perform a short period of recording. Then, click on the numbers to the right of the channel.

Then, click on Scaling... in the window.

Vertical Scale - LOCKED						
Channel:	1, Pressure					
		Scaling				
-Scale Range		v				
Upper:	56.93	mmHg				
Lower:	-65.06	mmHg				
	🔲 All Ch	annels				
Grid						
Major Division:	25.00	mmHg/div				
Base Point	0.00	mmHg				
Minor	Division: ON					
	🔲 All Ch	annels				
- Precision						
2 💌 digits	🦳 All Cha	innels				
	ОК	Cancel				

Finally, click on Cal1 and Cal2.

Change Scaling Parameters	×
CH1, Pressure	
Input value	Scale value
Cal1 -0.06256 mV	0
Cal2 61.37 mV	775.7
Units label:	mmHg
Cancel	ок

6.3. Placing markers

During recording, you can place markers by clicking below the text area.

After that, you can type the name of the marker in the text area.

7. Data manipulation

7.1. Basic operations with waveforms and channels

This chapter describes the basic steps, which you can use for the evaluation. This information can be useful if you have to modify a waveform to be able to perform a specific measurement.

7.1.1 Duplicating waveforms

To duplicate a waveform, first select it by clicking on its name.

Then, right-click on the waveform (not the name of the waveform), and select *Duplicate* from the local menu. Alternatively, you can click on *Edit* \rightarrow *Duplicate waveform*. This function becomes useful if you have to create a derivative of a waveform (e. g. the purple waveform is the derivate of the red one).

7.1.2 Renaming channels

To rename a channel, double-click on its name, then, type the new name of the channel in the window.

7.1.3 Changing the unit of the vertical axis'

To change the unit at any of the vertical axis', double-click on its unit.

>u 3

Then, type the new unit in the window.

7.1.4 Rescaling the horizontal axis

In many cases, the original scaling of the axis' can be inconvenient. To change the scaling of the horizontal axis, click on one of the numbers along it.

Then, modify the parameters in the window.

In this case, an upper limit of 45 seconds, and a major division of 5 seconds could be more convenient. *Try changing the original settings and see what happens*.

7.1.5 Rescaling the vertical axis'

To change the scaling of any of the vertical axis', click on one of the numbers along it, then modify the parameters in the window.

Note that you can also apply your modifications to all the vertical axis' by marking the 'All Channels' field. *Try changing the original settings and see what happens*.

7.1.6 Removing waveforms

To remove a waveform, first select it by clicking on its name. Then, click on $Edit \rightarrow Remove$ waveform. Use this function carefully!

7.1.7 Clearing waveforms

Clearing a waveform means that it is going to be filled up with zeros. To clear some part of a waveform, mark it with the selection tool (4.4.1 'Selection, control, and navigation tools of)

<u>measurement windows</u>²), then click on *Edit* \rightarrow *Clear*. By clicking on *Edit* \rightarrow *Clear All* you can clear the entire waveform. Use this function carefully!

7.2. Transformations: advanced tools for data manipulations

7.2.1 Smoothing

In some cases the signal contains a considerable amount of noise. In such cases, the detection of peaks or any given values (e. g. 70% of the maximum, etc.) in the signal can be difficult. By smoothing the waveform, one can suppress the noise, and as a result, the maxima and minima, as well as any given values can be clearly detected. To perform the smoothing of a waveform, select the waveform by clicking on its name, then click on *Transform* \rightarrow *Smoothing...* After that a window appears with the settings of the smoothing.

Smoothing factor				
3.000000 samples				
Mean value smoothing Median value smoothing				
Transform entire wave				

During smoothing, one point of the waveform is being replaced by the mean or the median of the points around it. The number of points, which are involved around a given point, is given by the Smoothing factor.

Be aware of that if you select some part of the waveform prior to smoothing, the process will be performed *only in the selected region*. To perform smoothing throughout the entire waveform, make sure that the 'Transform entire waveform' is selected.

7.2.2 Filtering with low-pass filter

In some cases, a low-frequency signal contains a high-frequency noise (or a high-frequency component, which is disturbing or not relevant). In this case, the high-frequency components have to be removed. This can be done by the use of a low-pass filter: click on *Transform* \rightarrow *Digital Filters* \rightarrow *IIR* \rightarrow *Low-pass...* After that, you can set the parameters of the filtering in the appearing window.

Digital Filter	r, IIR, Low Pass		×
Source	1, Press	ure	
70233	samples at	500.0000	samples/sec
Frequency		50.0000 Hz	
۵		0.7070	ОК
Filter er	itire wave		Cancel

Here, all the frequencies are being removed above the given frequency value.

Be aware of that if you select some part of the waveform prior to filtering, the process will be performed *only in the selected region*. To perform filtering throughout the entire waveform, make sure that the 'Transform entire waveform' is selected.

7.2.3 Filtering with high-pass filter

In some cases, a high-frequency signal contains a low-frequency noise (or a high-frequency component, which is disturbing or not relevant, e. g. the electric signal of breathing in the ECG). In this case, the low-frequency components have to be removed. This can be done by the use of a low-pass filter: click on *Transform* \rightarrow *Digital Filters* \rightarrow *High-pass...* After that, you can set the parameters of the filtering in the appearing window.

Digital Filter	, IIR, High Pass		X				
Source	Source 1, Pressure						
70233	samples at	500.0000	samples/sec				
Frequency		50.0000 Hz					
۵		0.7070	ОК				
🔽 Filter en	tire wave		Cancel				

Here, all the frequencies are being removed below the given frequency value.

Be aware of that if you select some part of the waveform prior to filtering, the process will be performed *only in the selected region*. To perform filtering throughout the entire waveform, make sure that the 'Transform entire waveform' is selected.

7.2.4 Fourier transformation

Performing Fourier transformation of a signal, which is represented in time, results in a signal represented in frequency. This means that it makes one able to see the frequencies in the signal, and how strong they are. To perform the Fourier transformation of the signal, click on *Transform* \rightarrow *FFT*... (FFT is Fast Fourier Transformation, an optimized version of Fourier transformation for computers). After that, you can set the parameters of the transformation in the appearing window.

F	FT			×	
	131072	point FFT			
	Pad with zeros O Pad with last point				
	Remove mean	Magnitude		C Linear	
	Remove trend	Phase	Show modified	l input	
	Window	Hamming	•		
	FFT of entire way	'e			
			ОК	Cancel	

Most of the settings are set right, and should not be modified. However, the scaling of the result might have to be modified, depending on the application.

The result of the calculation is presented in a new measurement window. The vertical scaling depends on the previous setting.

- dB:

- Linear:

The list of measurements, which can be performed in the measurement window of FFT are a little bit different than in the case of normal measurement windows (4.4.2 'Channels and measurements').

The difference is basically because the horizontal axis in this case is the frequency axis, instead of time ('X-axis: F', 'Delta F', 'F @ Max', 'F @ Min'), however, their function remains very similar.

Customization of the appearance of the information 8.

8.1. Toolkit buttons of the main window

There are several buttons in the toolbar just below the main menu. With these buttons you can customize the visible parts of the measurements and the appearance of the waveforms.

The E buttons control the display of the waveforms (curves). Try them, and see what happens! If you would like to restore the original arrangement of waveforms, please make sure that *only* the \boxtimes button is pressed in.

The E buttons control the scaling of the waveforms. The most important ones of them are the 🔄 and 🔛 buttons for you, which help you in seeing the whole waveform vertically and horizontally, respectively. You will frequently use them, since they can help you out of trouble if accidental or improper use of the zoom tool (4.4.1 'Selection, control, and navigation tools of measurement windows') happens ©.

The buttons help you in finding peaks.

shows or hides gridlines.

Shows or hides the types and results of measurements. Always make sure that the types and results of measurements are visible, since they show essential information for the evaluation of the measurements!

ſ	F	2	F
l	Ľ±	6	Ŀ

shows or hides the channel selection area.

by shows or hides the marker area. Always make sure that the marker area is visible, since it contains important information for the evaluation of the measurements!

shows or hides the journal.

Try these buttons and see what happens!

9. Similarities and differences between Biopac® Student Lab PRO® and Biopac® Student Lab Analysis

Biopac® Student Lab Analysis has several restrictions with respect to. This chapter describes the differences between the two softwares. The user interface of the Biopac® Student Lab Analysis can be seen below.

9.1. Similarities

Biopac® Student Lab Analysis has all those functions as Biopac® Student Lab *PRO*®, which are described in <u>4</u> 'Opening, evaluating and saving measurements', <u>5</u> 'Markers', and <u>6</u> 'Recording'. Some functions, which are described in <u>7</u> 'Data manipulation' can be also used, namely, you can

rescale the waveforms both horizontally and vertically (<u>7.1.4 'Rescaling the horizontal axis'</u> and 7.1.5 'Rescaling the vertical axis'').

9.2. Differences

The first and most salient difference is the absence of the tollbar. Instead of the toolbar, there are only 4 buttons.

Overlap Split Show Grid Hide Grid

Try them and see what happens.

The next significant difference can be found in the menu structure: there are much less options. Do not worry, most laboratory practices do not require the missing functions, so you can prepare well for them even by the use of Biopac® Student Lab Analysis.

Another minor difference is that only allows one measurement to be opened.

9.3. Restrictions

Unfortunately, Biopac® Student Lab Analysis is not able to perform most of the utilities, which are described in <u>7</u> 'Data manipulation'. Though these will be needed during some practices, you will be able to perform the required measurements, if you learn handling Biopac® Student Lab Analysis.

Another minor restriction is that only allows one measurement to be opened.