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Overview

Fluid mechanics in medicine

circulation
arterial system
capillary system
venous system
lymphatic circulation

respiration
upper respiratory tract
peripheral respiratory tract

other bodily fluids
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Overview

States of matter

solid liquid gas
Cohesion strong forces short-term no forces (ideal gas)

can turn repulsive molecular forces weak forces (real gas)
Motion of vibration Brownian motion Brownian motion
particles particles roll over

each other
Space-filling constant volume constant volume fill up space
Shape constant shape no defined shape no defined shape

great forces needed takes shape of
to change it container

Compressibility repulsive forces repulsive forces compressible
prevent compression prevent compression
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Overview

What is a fluid?

‘something that can flow’
‘something that has no defined shape’
fluid: a substance that cannot support shear stress
deformation:

tensile stress (tension)
‘tends to change the dimensions but not the shape’
force ⊥ surface
p = F

A

shear stress
‘tends to change the shape but not the dimensions’
force ∥ surface
τ= F

A

fluid is a common name for liquids and gases— in most cases, they can be
treated the same way
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Overview

Pressure and density

pressure: the ratio of the magnitude of the total force F exerted on a surface to
the area A of the surface

p :=
F

A

density of a substance: its mass per unit volume —

ϱ :=
m

V

if the object is not homogeneous, we have to define density for a very small
volume ∆V within which the density can be approximated as constant:

ϱ := lim
∆V→0

∆m

∆V
=

dm

dV

the SI unit of density�
ϱ
�
= 1

kg

m3
=

1000 g

106 cm3
= 10−3 g

cm3
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Overview

Classification of fluids

1 Compressibility
A compressible: its density (ϱ) can change (eg, gases)
B incompressible: its density (ϱ) is constant (eg, liquids)

2 Internal friction (viscosity)
A viscous: there IS internal friction
B non-viscous: internal friction is negligible

ideal fluid: incompressible and non-viscous
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Gases Overview

Thermal equilibrium, temperature and heat

heat: the energy associated with the random thermal motion of the particles of
matter
heat and temperature, eg: if we remove a metal ice tray and a cardboard box of
frozen vegetables from the freezer, the ice tray feels colder than the box even
though both are at the same temperature—metal transfers energy by heat at a
higher rate than cardboard does
two objects are in thermal contact with each other if energy can be exchanged
between them by processes due to a temperature difference
thermal equilibrium is a situation in which two objects would not exchange
energy by heat or electromagnetic radiation if they were placed in thermal contact
temperature: the property that determines whether an object is in thermal
equilibrium with other objects
two objects in thermal equilibrium with each other are at the same
temperature; if two objects have different temperatures, then they are not in
thermal equilibrium with each other
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Gases Thermal expansion

The basis of thermal expansion

thermal expansion is a consequence of the change in the average separation
between the atoms in an object
as the temperature of an object increases, the average separation between them
increases⇒ the volume of the object increases

1. Figure: Expansion joint
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Gases Thermal expansion

Linear expansion

if thermal expansion is sufficiently small relative to the initial dimensions of the
object, the change in any dimension is, to a good approximation, proportional to
the first power of the temperature change:

∆L =αL i∆T ,

where ∆L = L f− L i is the change in a dimension with L i being the initial
dimension and L f being the final dimension, and α denotes the average
coefficient of linear expansion
the coefficient of linear expansion depends on the material
we can rewrite this equation to obtain the dimension of an object L (T ) at a
temperature T if the dimension L0 at some temperature T0 is known:

L (T ) = L0+∆L = L0+αL0∆T = L0 (1+α∆T )

it can be shown that a cavity in a piece of material expands in the same way as if
the cavity were filled with the material
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Gases Thermal expansion

Surface and volume expansion

as linear dimensions of an object change with temperature, surface area and
volume change as well
surface change for a square:

A(T ) = L (T )2 = [L0 (1+α∆T )]2 = L 2
0 (1+α∆T )2 = A0

�
1+2α∆T +α2 (∆T )2

�
which can be approximated as

A(T ) = A0 (1+2α∆T ) ,

because α is usually very small and the terms containing its square are negligible
as compared to the terms containing its first power
the change in volume is proportional to the initial volume V0 and to the change in
temperature according to the relationship

∆V =V0β∆T ,

where β is the average coefficient of volume expansion

Prof. Ferenc Bari (SZTE DMI) Flow of fluids 1 20th October 2016 11 / 71



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Gases Thermal expansion

Linear and volume expansion coefficients

if expansion is isotropic — that is, the average coefficient of linear expansion of
the object is the same in all directions —, linear and volume expansion
coefficients are related through

β = 3α

this can be proved by considering that the volume change can be expressed with
the changes in the dimensions ℓ, w and h :

V0+∆V = (ℓ0+∆ℓ) (w0+∆w ) (h0+∆h )

V0+∆V = l0 (1+α∆T ) ·w0 (1+α∆T ) ·h0 (1+α∆T )

V0+∆V = l0w0h0 · (1+α∆T )3 =V0 · �1+3α∆T +3 (α∆T )2+ (α∆T )3
�

as α is usually very small, the terms containing its square and cube are negligible
as compared to the terms containing its first power:

V0+∆V ≈V0+V0 ·3α∆T

∆V =V0 ·3α∆T =V0β∆T

β = 3α
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Gases Thermodynamic laws for gases

Heat and internal energy

internal energy: all the energy of a system that is associated with its
microscopic components — atoms and molecules — when viewed from a
reference frame at rest with respect to the centre of mass of the system
any bulk kinetic energy of the system due to its motion through space is not
included in internal energy (only the kinetic energy due to the random motion of
its particles)
internal energy includes kinetic energy of random translational, rotational, and
vibrational motion of particles, potential energy within molecules, and potential
energy between particles
heat: the transfer of energy across the boundary of a system due to a temperature
difference between the system and its surroundings
the SI unit of heat is the joule:

[Q ] = 1 J
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Gases Thermodynamic laws for gases

Definition and state of an ideal gas

ideal gas: a gas for which the following criteria are met:
1 the only interaction between particles is through collisions (ie, there are no attractive

forces)
2 the volume of the particles of which the gas is made up is negligible compared to the

volume of the container

the state of the gas can be given by the following physical quantities:
the pressure p

the temperature T (always expressed in Kelvins when using gas laws)
the volume V

the mass m , the number of particles N or the amount of substance n
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Gases Thermodynamic laws for gases

Quantities describing the amount of gas

Avogadro constant: the number of atoms in exactly 12 grams of 12C

NA= 6.022 ·1023 1

mol

amount of substance: the number of particles present in a sample, as expressed
as a multiple of the particles contained in exactly 12 grams of 12C; the ratio of the
number of particles in the sample to the Avogadro constant:

n =
N

NA
,

where N denotes the number of particles in the sample
the SI unit of the amount of substance is themol
molar mass: the mass of one mole of a substance; the ratio of the mass m of the
sample to the amount of substance n :

M =
m

n

molar mass is usually expressed in units of g/mol
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Gases Thermodynamic laws for gases

Laws of the ideal gas

Boyle–Mariotte law: at constant temperature, the pressure p and volume V of a
fixed mass of gas are inversely proportional to each other:

p V = constant

Gay-Lussac’s first law: at constant volume, the pressure p of a fixed mass of
gas is proportional to the absolute temperature:

p∝ T

Gay-Lussac’s second law or Charles’s law: at constant pressure, the volume V
of a fixed mass of gas is proportional to the absolute temperature:

V ∝ T
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Gases Thermodynamic laws for gases

The equation of state for an ideal gas

the Boyle–Mariotte law and the Gay-Lussac laws can be combined into a single
equation of state which summarises all state changes:

p V = nRT ,

where n is the amount of substance and R is the universal gas constant:

R = 8.314
J

mol ·K
an alternative form of the equation of state:

p V =N k T ,

where N is the number of particles and k is Boltzmann’s constant:

k =
R

NA
= 1.38 ·10−23 J

K

in the equation of state (and in all gas laws), the temperature must always be
expressed in kelvins
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Gases Kinetic theory of gases

Molecular model of an ideal gas

1 The number of particles in the gas is large, and the average distance
between them is large compared to the size of the particles⇒ particles take
up a negligible volume in the container.

2 The particles obey Newton’s laws of motion, but as a whole they move
randomly: any particle can move in any direction with any speed.

3 The particles only interact with each other through collisions.
4 The particles make elastic collisions with the walls.
5 All particles in the gas are identical.
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Gases Kinetic theory of gases

The container and the collisions with the walls
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Gases Kinetic theory of gases

A collision in the x direction

let us model the container as a cube with edges of d , and assume that all particles
are identical with mass m

assume that the i th particle makes an elastic collision with a wall perpendicular
to the x direction; the velocity components after the collision are

v ′y i = vy i ,

because the wall exerts no force in the y direction;

v ′z i = vz i ,

because the wall exerts no force in the z direction; and

v ′x i =−vx i ,

because the direction of motion changes, but the kinetic energy is conserved in
an elastic collison, that is

v ′2 = v ′2x + v ′2y + v ′2z = v 2 = v 2
x + v 2

y + v 2
z
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Gases Kinetic theory of gases

The force acting on the particle

the change in the x component of the momentum of the i th particle as a result of
the collision is

∆px i =−m vx i −m vx i =−2m vx i

according to the impulse-momentum theorem, this is equal to the impulse
imparted to the particle by the wall in the duration of the collision:

∆px i = Fi , on particle ·∆tcollision

we do not know how long the collision lasts, but we can rewrite the impulse-
momentum theorem formula to contain the average force Fi acting on the particle
in the time interval ∆t that passes between two collisions with the same wall

∆px i = Fi∆t

between two successive collisions, the particle must travel the length of the edge
of the cube d twice, so

∆t =
2d

vx i
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Gases Kinetic theory of gases

The force acting on the wall

this way, the average force exerted by the wall on the i th particle is

Fi =
∆px i

∆t
=−2m vx i · vx i

2d
=−m

d
· v 2

x i

Newton’s third law states that the force exerted on the wall by the i th particle is
the the opposite of Fi :

Fi , wall =−Fi =
m

d
· v 2

x i

this is the force exerted only by the i th particle; to get the total force F acting on
the wall, we have to add up the forces from all the N particles:

F =
N−1∑
i=0

m

d
· v 2

x i =
m

d

N−1∑
i=0

v 2
x i

if there were only a few particles, the average force would fluctuate in time, but
for a large number of particles, the variations are smoothed out, so the average
force will be the same for any time interval
the force on the wall, F , is constant in time
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Gases Kinetic theory of gases

The average speed of particles

particles have different velocities and speeds, but we can take an average of them
the average speed square in the x direction is

v 2
x =

1

N

N−1∑
i=0

v 2
x i

thus the sum in the expression of the force is
N−1∑
i=0

v 2
x i =N v 2

x

the force exerted on the wall becomes

F =N
m

d
v 2

x

the pressure on a wall is the force divided by the surface area of the wall

p =
F

A
=

F

d 2
=N

m

d 3
v 2

x =N
m

V
v 2

x ,

where V = d 3 is the volume of the container (remember, it is a cube)
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Gases Kinetic theory of gases

The equipartition theorem

equipartition: from Latin, means ‘equal sharing’
in thermal equilibrium, each particle has an equal share in the energy
theorem of equipartition of energy: in thermal equilibrium, each particle in the
system has an equal average energy in each degree of freedom:

ε=
1

2
k T

where ε is the average energy in a degree of freedom, k is Boltzmann’s constant
and T is the absolute temperature
degree of freedom: an independent means by which a molecule can possess
energy
the number of degrees of freedom ( f ):

translation: 3 degrees of freedom, corresponding to the 3 dimensions of space
rotation: no extra degrees of freedom for monatomic gases, 2 degrees of freedom for
diatomic molecules and 3 for polyatomic molecules
vibrational: degrees of freedom associated with the vibration around equilibrium
positions in molecules; depend on structure
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Gases Kinetic theory of gases

Degrees of freedom for a diatomic molecule
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Gases Kinetic theory of gases

Degrees of freedom for different gases
Monatomic
3 translational degrees of freedom: f = 3

Diatomic
3 translational
2 rotational (the contribution from rotating around the longitudinal axis is negligible as
compared to the other two axes)
2 vibrational: kinetic and potential energy components of vibrations
quantum mechanics⇒ at low temperatures, all molecules are in the lowest possible
rotational and vibrational energy states, so those degrees of freedom are ‘frozen’; at room
temperature, the rotational components begin to contribute but the vibrational ones still do
not; only at high temperatures are the vibrational degrees of freedom taken into account
so at room temperature the number of the degrees of freedom is f = 3+2= 5

Polyatomic
for similar reasons as with diatomic gases, we can assume that the number of the degrees of
freedom at room temperature is f = 3+3= 6 (3 translational, 3 rotational)
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Gases Kinetic theory of gases

The equation of state of the ideal gas

we have found that the pressure on a wall is

p =N
m

V
v 2

x ,

from the equipartition theorem, we know that the average energy associated with
translational motion in the x direction is

εx =
1

2
k T

this average energy is the kinetic energy of the motion in the x direction, so

εx =
1

2
m v 2

x

comparing the two equations, we get that
m v 2

x = k T

this result tells us that temperature is a direct measure of the average kinetic
energy of the particles
substituting it into the formula of the pressure, and multiplying both sides by V ,
we get the equation of state of the ideal gas:

p V =N m v 2
x =N k T
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Gases The laws of thermodynamics

Laws of thermodynamics

0 If objects A and B are separately in thermal equilibrium with a third object C,
then A and B are in thermal equilibrium with each other.

1 The change in the internal energy of a system is equal to the sum of the heat Q
transferred to the system and the work W done on the system.

2 Forms:
It is impossible to construct a heat engine that, operating in a cycle, produces no
effect other than the input of energy by heat from a reservoir and the performance of
an equal amount of work.
Energy does not transfer spontaneously by heat from a cold object to a hot object.
The total entropy of an isolated system that undergoes a change cannot decrease.

3 The entropy of chemically homogeneous substances approaches a constant value
when the temperature approaches 0K.

Prof. Ferenc Bari (SZTE DMI) Flow of fluids 1 20th October 2016 28 / 71



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Gases The laws of thermodynamics

The first law of thermodynamics

conservation of energy: the change in the energy of the system is equal to the
total amount of energy transferred through the boundary of the system
the first law of thermodynamics: a special case of the conservation of energy
ways to change the internal energy of a system

work done on the system: an external force acts on the system which causes a
macroscopic displacement
heat: a microscopic form of energy transfer if a temperature difference acts across
the boundary of the system

the first law of thermodynamics: the change in the internal energy of a system is
equal to the sum of the heatQ transferred to the system and the work W done on
the system:

∆Eint =Q +W

sign conventions:
Q is positive when the system gains heat and negative when loses
W is positive when the system gains energy through work (eg, compression of a
gas) and negative when it loses energy through work (eg, expansion of a gas)
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Gases The laws of thermodynamics

Work done on a gas
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Gases The laws of thermodynamics

Work done on a gas

assume that we have a gas in a cylinder closed with a piston; the pressure of the
gas is p and the surface area of the piston is A, so the force exerted by the gas on
the piston is p A
according to Newton’s third law, the force exerted on the gas is the opposite,
−p A
on a small displacement ∆y , this force does ∆W work on the gas:

∆W =−p A∆y =−p∆V ,

as A∆y is the volume change the gas is subjected to
if the pressure stays constant during the process, we can express the work with
a simple formula:

W =−p∆V ,

where ∆V =Vf−Vi is the total volume change during the process
generally, the pressure varies with the volume (p = p (V )), so we have to use
integration:

W =−
Vf∫

Vi

p (V )dV
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Gases The laws of thermodynamics

Work done on a gas

the simplified meaning of integration: ‘the area under the p (V ) curve’

the volume change:
positive when the gas expands
negative when the gas is compressed

thus the work done on the gas is
negative when the gas expands
positive when the gas is compressed
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Gases The laws of thermodynamics

Internal energy of a gas

internal energy: the energy associated with the microscopic components of a
system
in an ideal gas, there are no interactions between particles except for collisions,
so the only source of energy is kinetic energy
according to the equipartition theorem, the average energy per particle per
degree of freedom is

ε=
1

2
k T

so, for a gas containing N number of particles, each with f degrees of freedom,
the total energy, which is the internal energy, is

Eint =
f

2
N k T

the degrees of freedom at room temperature: f = 3 for monatomic gases, f = 5
for diatomic gases and f = 6 for polyatomic gases
using the equation of state p V =N k T , we can express the internal energy in
another form:

Eint =
f

2
p V
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Gases The laws of thermodynamics

Special thermodynamic processes (1)

Adiabatic process
no heat enters or leaves the system: Q = 0

∆Eint =W (for an adiabatic process)

Isobaric process
a process that occurs at constant pressure
at constant pressure, the work done on the gas is simplified to W =−p (Vf−Vi)
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Gases The laws of thermodynamics

Special thermodynamic processes (2)

Isovolumetric process
a process that occurs at constant volume
at constant volume, the work done on the gas is zero as the volume does not
change
∆Eint =Q (for an isovolumetric process)

Isothermal process
a process that occurs at constant temperature
at constant temperature, the change in the internal energy is zero:

∆Eint =
f

2
N k T − f

2
N k T = 0

Q =−W (for an isothermal process)
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Gases Real gases

Real gases

real gases:
not particles (non-zero volume)
attractive forces between particles

van der Waals equation of state�
p +

n 2a

V 2

�
(V −n b ) = nRT ,

where a is a measure of the attraction between the
particles and b is the volume excluded by a mole of
particles.
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Hydrostatics

Pressure-depth relation
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Hydrostatics

Pressure-depth relation

an incompressible liquid of density ϱ at rest
we pick the liquid contained within an imaginary cylinder of cross-sectional area
A extending from depth d to depth d +h

the external liquid exerts forces at all points on the surface of the sample,
perpendicular to the surface
pressure on top face: p0 ⇒ force: F0 = p0A

pressure on bottom face: p ⇒ force: F = p A

the liquid volume is at rest, so the net force acting on it must be zero
equilibrium condition in the vertical direction:∑

Fy = 0= p A−mg −p0A

the mass of the sample can be expressed using the density and the volume:

m =ϱV =ϱAh
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Hydrostatics

Pressure-depth relation and Pascal’s law

substituting this into the equilibrium equation

0= p A−ϱAhg −p0A

dividing both sides by A and rearranging, we get

p = p0+ϱhg

it means that the pressure at a depth h below a given point is greater by an
amount ϱhg

pressure below the surface depends the pressure on the surface and on the depth
below the surface
if the pressure on the surface changes, the pressure below must also change⇒
any increase in pressure at the surface must be transmitted to every other point in
the fluid
Pascal’s law: a change in the pressure applied to a stationary fluid is transmitted
undiminished to every point of the fluid and to the walls of the container.
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Hydrostatics

Hydrostatic paradox

It follows from Pascal’s law that the pressure acting on the bottom of a container is
independent of the shape of the container; it only depends on the height of the fluid.
The pressure on the bottom surface is the same for all the containers below.
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Hydrostatics

Barometer

h

p
0

p = 0 invented by (1608–1647)
a tube closed at one end is filled with mercury, then
inverted into a dish of mercury
the pressure inside the tube (the hydrostatic pressure of
mercury, p =ϱHghg ) keeps equilibrium with the
pressure outside (atmospheric pressure, p0):

p0 =ϱHghg

h =
p0

ϱHgg
=

1.013 ·105 Pa�
13600kg/m3
� · (9.8 m/s2)

= 0.76m

as the atmospheric pressure changes, the height also
changes⇒ the tube can be calibrated and scaled to
measure atmospheric pressure
the most common pressure unit in medicine is millimetre
of mercury (mmHg): 1 mmHg=�
13600kg/m3
� · �9.8 m/s2
� · (0.001m) = 133.3 Pa
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Hydrostatics

Hydrostatics in the human body
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Hydrodynamics

Basic quantities

volumetric flow rate or volume current the volume flowing through a
cross-section of a tube in unit time

I :=
dV

dt
,

where m denotes the mass, t is the time and V stands for the volume
the greater the cross-section area, the greater the volumetric flow rate→
volumetric flux (or volumetric current density): the volumetric flow rate
through a unit cross-section area

J :=
dI

dA
,

where A denotes the cross-section area
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Hydrodynamics

What drives fluid flow?

analogue: Ohm’s law — when there is a potential difference, electrical current
will flow in proportion to the potential difference (voltage): I = 1

R U

in fluid flow, pressure will take the place of the electrical potential and
volumetric flow rate will take the place of current — when there is a pressure
difference, the fluid will flow in proportion, from high-pressure areas towards
low-pressure areas
further analogues:

diffusion: when there is a concentration difference, molecules will diffuse in
proportion, from high-concentration areas towards low-concentration areas
heat flow: when there is a temperature difference, heat will flow in proportion, from
hotter areas towards colder areas
falling objects: when there is difference in gravitational potential energy, objects
will fall (or roll down) from high-potential areas towards low-potential areas

this is a general pattern in Nature: when there is a difference in a potential
(electric, gravitational, pressure, temperature, concentration), a transport process
will occur, directed from the high-potential area towards the low-potential area
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Hydrodynamics Equation of continuity

Flow of incompressible fluids

liquids: generally incompressible
gases: generally compressible
even for gases, if the flow speed is not too high (< 50m/s), ϱ does not change
significantly and the flow can be considered incompressible
time dependence of the flow

stationary (steady): speed and flow rate are independent of time
non-stationary (unsteady): speed and flow rate do depend on time
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Hydrodynamics Equation of continuity

Flow rate and flow speed

t = 0 t = ∆t
s = v ∆t

A
v
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Hydrodynamics Equation of continuity

Flow rate and flow speed

let us assume that the fluid particles move parallel to each other with the same
flow velocity v

this way, in time ∆t they travel a distance s = v∆t

from the perspective of fluid flow, this means that volume ∆V has been carried
through a given cross-section area A of the tube, where

∆V = As = Av∆t

thus the volumetric flow rate of the flow is

I =
∆V

∆t
=

Av∆t

∆t
= Av
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Hydrodynamics Equation of continuity

Illustration

1
2'2

1'

t = 0 t = ∆t
t = 0 t = ∆t

s = v ∆t1 1

s = v ∆t2 2

A2A1 v1

v2
∆m1

∆m2
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Hydrodynamics Equation of continuity

Notations

(1) and (2): selected discs in the fluid at time t = 0

(1’) and (2’): locations of the selected discs in at time t =∆t

v1: the velocity of the fluid at (1) and (1’)
v2: the velocity of the fluid at (2) and (2’)
A1: area of the cross-section at (1) and (1’)
A2: area of the cross-section at (2) and (2’)
s1: distance travelled by the fluid between locations (1) and (1’)
s2: distance travelled by the fluid between locations (2) and (2’)
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Hydrodynamics Equation of continuity

Consequences of incompressibility

the density is the same between (1) and (1’) and (2) and (2’): ϱ1 =ϱ2 =ϱ

the mass flowing in at (1) is equal to the mass flowing out at (2):
∆m1 =∆m2 =∆m

otherwise mass would accumulate or run out in the volume of the pipe between
(1) and (2), increasing or decreasing the density, which contradicts the condition
of incompressibility
∆m =ϱ∆V1 =ϱ∆V2→
the volume flowing in at (1) is equal to the volume flowing out at (2):
∆V1 =∆V2 =∆V
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Hydrodynamics Equation of continuity

Equation of continuity

we have seen that since the fluid is incompressible,

∆V1 =∆V2

∆V1 = A1s1 = A1v1∆t

∆V2 = A2s2 = A2v2∆t

∆V1 =∆V2⇒ A1v1∆t = A2v2∆t

A1v1 = A2v2

since (1) and (2) were chosen arbitrarily, this must hold to any two cross-sections
along the flow:

A · v = const

this is the equation of continuity
since Av = I , this means that the volumetric flow rate is constant along the
tube
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Hydrodynamics Equation of continuity

Example: a syringe

A2v1
v2A1

A1v1 = A2v2

A1≫ A2⇒ v2≫ v1
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Hydrodynamics Equation of continuity

Example: flow speed in blood vessels

Blood vessel cross-section area [cm2] velocity [cm/s]
Aorta 4.5 40
Arteries 20 9
Arterioles 400 0.45
Capillaries 4500 0.04
Veins 40 4.5
Vena cava 18 10
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Hydrodynamics Equation of continuity

Example: flow speed in blood vessels
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Hydrodynamics Bernoulli’s law

Flow of ideal fluids

ideal fluid: incompressible and non-viscous
no internal friction→ no loss of mechanical energy
mechanical energy: potential energy + kinetic energy

E = EP +EK

the conservation of mechanical energy applies: external work done on the
system = change in the mechanical energy of the system

W =∆E =∆EP +∆EK

Bernoulli’s law: a special form of the conservation of mechanical energy for the
flow of ideal fluids
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Hydrodynamics Bernoulli’s law

Illustration

p1

A1

h1

v1 Δ t s1=

v2 Δ t s2=

h2

A2

p2

v1

v2
1 1’

2 2’

t = 0 t = ∆t

∆m1

∆m2

∆V1

∆V2

F1

F2

t = 0 t = ∆t
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Hydrodynamics Bernoulli’s law

Notations

(1) and (2): selected discs in the fluid at time t = 0

(1’) and (2’): locations of the selected discs in at time t =∆t

vi : the velocity of the fluid at (i ) and (i ’) (i ∈ {1, 2})
Ai : area of the cross-section at (i ) and (i ’) (i ∈ {1, 2})
si : distance travelled by the fluid between locations (i ) and (i ’) (i ∈ {1, 2})
hi : height of the centre of mass of the fluid at (i ) and (i ’) (as compared to an
arbitrary reference level, i ∈ {1, 2})
pi : pressure exerted by the rest of the fluid at (i ) and (i ’) (i ∈ {1, 2})
Fi : force exerted by the rest of the fluid at (i ) and (i ’) (i ∈ {1, 2})
∆mi : mass of the fluid between locations (i ) and (i ’) (i ∈ {1, 2})
∆Vi : volume of the fluid between locations (i ) and (i ’) (i ∈ {1, 2})
ϱi : density of the fluid between locations (i ) and (i ’) (i ∈ {1, 2})
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Hydrodynamics Bernoulli’s law

Energy changes

how does the energy of the fluid
between (1) and (2) change?
kinetic and potential energies only
depend on the position
EC: the energy of the part of the fluid
which does not change between t = 0
and t =∆t

E = E1+EC

E ′ = EC +E2

∆E = E ′−E = E2−E1

only the energy of the marked
sections changes

1

2

1'

2'

t = 0

t = ∆t

E1 Ec

E2

Ec
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Hydrodynamics Bernoulli’s law

Implications of the equation of continuity
ϱ1 =ϱ2 =ϱ

∆m1 =∆m2 =∆m

∆V1 =
∆m1

ϱ
=
∆m2

ϱ
=∆V2

∆V1 = A1s1 = A1v1∆t

∆V2 = A1s1 = A2v2∆t

Difference between the fluid states at t = 0 and t =∆t : mass ∆m is transported from
(1) to (2)

What happens to this mass?
1 the rest of the fluid does work on it
2 moved from h1 to h2 → its potential energy changes
3 its velocity changes→ its kinetic energy changes
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Hydrodynamics Bernoulli’s law

Work done by the rest of the fluid

definition of pressure:

p =
F

A

F = p A

work done by the fluid at (1) and (2):

W1 = F1s1 = F1v1∆t = p1A1v1∆t = p1∆V = p1
∆m

ϱ

W2 =−F2s2 =−F2v2∆t =−p2A2v2∆t =−p2∆V =−p2
∆m

ϱ

negative sign in W2: the direction of the force is opposite to that of the
displacement
total external work:

W =W1+W2 =
∆m

ϱ

�
p1−p2

�
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Hydrodynamics Bernoulli’s law

Potential and kinetic energies

Gravitational potential energy: EP =mg h

at (1): EP,1 =∆mg h1

at (2): EP,2 =∆mg h2

change: ∆EP = EP,2−EP,1 =∆mg (h2−h1)

Kinetic energy: EK =
1
2 m v 2

at (1): EK,1 =
1
2∆m v 2

1

at (2): EK,2 =
1
2∆m v 2

2

change: ∆EK = EK,2−EK,1 =
1
2∆m (v 2

2 − v 2
1 )
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Hydrodynamics Bernoulli’s law

Bernoulli’s equation

conservation of mechanical energy: W =∆E =∆EP +∆EK

∆m

ϱ

�
p1−p2

�
=∆mg (h2−h1)+

1

2
∆m (v 2

2 − v 2
1 ) // · ϱ

∆m

p1−p2 =ϱg h2−ϱg h1+
1

2
ϱv 2

2 − 1

2
ϱv 2

1

p1+ϱg h1+
1

2
ϱv 2

1 = p2+ϱg h2+
1

2
ϱv 2

2

fluid discs (1) and (2) were chosen arbitrarily, so this must hold to any two

cross-sections along the flow: p +ϱg h + 1
2ϱv 2 = const

this is Bernoulli’s law
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Hydrodynamics Bernoulli’s law

Interpreting Bernoulli’s law

p : static pressure

ϱg h : hydrostatic pressure— gravitational potential
energy per unit volume

1
2ϱv 2: dynamic pressure— kinetic energy per unit
volume
total pressure = static pressure + hydrostatic pressure +
dynamic pressure
Bernoulli’s law in other words: the total pressure is
constant along the tube
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Hydrodynamics Bernoulli’s law

Applying Bernoulli’s law: pressure–depth relationship

p

p 0

h

we compare two points in a stationary fluid, one
located deeper than the other by h

the dynamic pressure is zero at both locations
the static pressure is p0 in the higher point, p in
the lower point
let the reference level of the hydrostatic pressure
be at the lower point⇒ the hydrostatic pressure is
zero in the lower point and ϱhg in the higher point
applying Bernoulli’s law:

p0+0+ϱhg = p +0+0

p0+ϱhg = p

this is the pressure–depth relationship we obtained
earlier
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Hydrodynamics Bernoulli’s law

Example: Venturi tube
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Hydrodynamics Bernoulli’s law

Example: Venturi tube

from the equation of continuity:

A1v1 = A2v2

A1≫ A2⇒ v2≫ v1

apply Bernoulli’s law to compare 1 and 2:

p1+0+
1

2
ϱv 2

1 = p2+0+
1

2
ϱv 2

2

since v2≫ v1⇒ p1≫ p2

1 and 3 cannot be compared, because they are in different tubes; but 1’ and 3 can
(1’ is at the beginning of the vertical tube)
the static pressures at 1 and 1’ are the same: p1′ = p1

the dynamic pressure at 1’ and 3 is 0, because the fluid does not flow in the
vertical tubes
apply Bernoulli’s law to compare 1’ and 3 (the reference level is now at 1’):

p1+0+0= p0+ϱh3g +0,

where p0 is the atmospheric pressure
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Hydrodynamics Bernoulli’s law

Example: Venturi tube

2 and 4 cannot be compared, because they are in different tubes; but 2’ and 4 can
(2’ is at the beginning of the vertical tube)
the static pressures at 2 and 2’ are the same: p2′ = p2

the dynamic pressure at 2’ and 4 is 0, because the fluid does not flow in the
vertical tubes
apply Bernoulli’s law to compare 2’ and 4 (the reference level is now at 2’):

p2+0+0= p0+ϱh4g +0

if we compare h3 and h4

h3 =
p1−p0

ϱg
≫ h4 =

p2−p0

ϱg
,

because we have seen that p1≫ p2

the Venturi tube proves Bernoulli’s law — at the wider section of the tube,
where flow speed is smaller, the static pressure is higher as compared to
narrower sections of the tube
the role of vertical tubes: to make the differences in static pressure visible
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Hydrodynamics Bernoulli’s law

Example: Bunsen burner

flow speed in the narrower section is
greater⇒ lower static pressure
static pressure within the tube is less
than the atmospheric pressure
as a result, air flows into the tube
the air influx feeds the flame at the
top
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Hydrodynamics Bernoulli’s law

Example: carburettor

air injected into the
carburettor chamber
in the narrow throat,
the air is moving at
its fastest speed and
therefore it is at its
lowest pressure
low pressure in the
chamber pumps the
fuel into the
chamber, where it is
mixed with air
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Hydrodynamics Bernoulli’s law

Examples: atherosclerosis and aneurysm
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Sources and recommended reading I

[1] Sándor Damjanovich, Judit Fidy, and János Szöllősy, editors.Medical biophysics.
Medicina, Budapest, 3rd edition, 2009.

[2] Raymond A Serway and John W Jewett. Physics for Scientists and Engineers.
Thomson Brooks/Cole, 6th edition, 2004.

Prof. Ferenc Bari (SZTE DMI) Flow of fluids 1 20th October 2016 71 / 71


	Overview
	Gases
	Overview
	Thermal expansion
	Thermodynamic laws for gases
	Kinetic theory of gases
	The laws of thermodynamics
	Real gases

	Hydrostatics
	Hydrodynamics
	Equation of continuity
	Bernoulli's law

	Sources

