Medical Physics I. (1st semester)

Physics of hearing

Ferenc Bari Professor & chairman Department of Medical Physics & Informatics

Szeged, October 8, 2015

The hearing system –physics of hearing

Basic schematic diagram of the entire auditory system

Sound System

Source Any vibrating object Medium Any gas, liquid or solid Receiver anything designed to

anything designed todetect the vibrationswithin the mediumoriginating from thesource

A Common Sound System

Illustration of the distribution of molecules surrounding a source in an instant in time

Compression (Region of high pressure)

Condensation and Rarefaction

Bands of condensation and rarefaction emanating from a sound source

Important Physical Characteristics of Sound

Frequency

Intensity

- Rate of pressure change as a function of time
- Measured as cycles/sec or Hertz
- The primary determiner of pitch

- Magnitude of the pressure change
- Measured as the decibel (dB)
- The primary determiner of loudness

Frequency and Intensity

Sounds a and c share the same frequency and sounds b and c share the same intensity

How to quantify loudness: What is a decibel?

20 log (p2/p1) dB Sound Pressure Level (SPL)

- (p2: sound of interest, p1: threshold of human hearing at 1kHz)
- hearing protection: longer exposure of levels above 85 dB
- 80 dB=20 log (p₂/p₁) p₂=10⁴/ p₁
 P1= hearing threshold (10⁻⁵ Pa)

Figure 11.2

The frequency and intensity of sound waves. (a) We perceive high-frequency waves as having a high pitch. (b) We perceive high-intensity waves as loud.

Pure Tones, Musical Sounds, and Noise

Pure tones: regular wave of a single frequency. i = intensity, p = period, t = time

Musical sound: the wave is made up of a fundamental frequency (pitch) and harmonic characteristics of the timbre. Upgrading a sound by one octave means increasing the fundamental frequency twofold.

Noise: no characteristic frequency.

From: Prominade 'Round the Cochlea www.iurc.montp.inserm.fr/cric/audition/english/index.htm

Equal loudness curves, unit (phons)

Sound Intensity

Divisions of the Ear

- Outer ear pinna and auditory canal down to the tympanic membrane – directs sound waves to the hearing apparatus – highly developed in different species or not developed or modified in others
- Middle ear 3 ossicles in an air-filled cavity connected to the oropharynx by the auditory tube – impedance matching between air and cochlear fluids – amplifies pressure by a factor of 20
- Inner ear 3 fluid-filled coiled tubes in the petrous portion of the temporal bone (cochlea [Latin for snail])

Path of Sound

- External canal
- Vibrates eardrum
- Vibration moves though ossicles
 - Malleus, incus, stapes
- Stapes vibrates oval window of cochlea
- Creates pressure wave in the fluid inside

Ear anatomy and basic physics 1.

Outer Ear (*Resonator*)

http://www.nidcd.nih.gov/StaticReso urces/health/hearing/images/normal_ ear.asp

Ear anatomy and basic physics 2.

Outer Ear (*Resonator*)

http://www.nidcd.nih.gov/StaticResc urces/health/hearing/images/normal_ ear.asp

Ear anatomy and basic physics 3.

ear.asp

Ear anatomy substructures

The outer ear

The human ear is most responsive at about 3,000 Hz

Most speech occurs at about 3,000 Hz

Partially closed pipe resonator model

Outer ear resonator

W. J. Mullin, W. J. George, J. P. Mestre, and S. L. Velleman, *Fundamentals of sound with applications to speech and hearing* (Allyn and Bacon, Boston, 2003)

The middle ear

There is an impedance mismatch between the outer and inner ears

Air Fluid

Without the middle ear there would be large attenuation at the air-fluid boundary

Transmission and reflection

D. T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000)

Power transmission

Doing some math gives the power transmission coefficient

Plugging in numbers gives the attenuation

W. J. Mullin, W. J. George, J. P. Mestre, and S. L. Velleman, *Fundamentals of sound with applications to speech and hearing* (Allyn and Bacon, Boston, 2003)

Ossicles as levers

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/imgsou/oss3.gif

Stapes footprint

http://www.ssc.education.ed.ac.uk/courses/pictures/hearing8.gif

Impedance match

Pressure Transduction Through the Cochlear Fluids

- Vibrations are transmitted from the tympanic membrane to the cochlea by the ossicles
- The foot plate of the stapes deflects the membrane of the oval window (at the vestibule), causing fluid movement in the scala vestibuli
- Pressure changes are transmitted up the scala vestibuli to the apex and then back down the scala tympani to the round window
- The round window membrane deflects 180° out of phase with the oval window

Cochlear Fluids

- Scala tympani and scala vestibuli <u>perilymph</u> – similar to CSF and extracellular fluid
 - Low K⁺ (7mM) and high Na⁺ (140mM)
- Scala media <u>endolymph</u> similar to intracellular fluid
 - High K⁺ (150mM) and low Na⁺ (1mM)
- Stria vascularis (on the outer margin of the scala media) actively resorbs sodium and secretes potassium against their concentration gradients; important target for causing deafness

Place Theory

- Vibration as function of time
- Vibration as function of distance along BM
- Neural activity as function of distance
- Sensation of pitch

The Nobel Prize in Physiology or Medicine 1961

"for his discoveries of the physical mechanism

of stimulation within the cochlea"