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Mechanical 

oscillations in 

human bodies.

Extended 

network of 

springs (elastic 

elements) and 

dampers.

The frequencies 

of self oscillations 

are in the very 

low frequency 

range.

Forced and self 

oscillation



Medical consequencies of mechanical 

vibrations, 

the periodic movement (oscillation) 

of the heart



Medical consequencies of 

mechanical vibrations, 
percussio and auscultatio

As early as in 1761, L. Auenbrugger introduced the traditional method of 

percussion (sounding) in the medical investigation.

In Hungary, 

Ignác Sauer 

introduced this 

method into the 

every day’s routine 

of physicians.

http://www.klauzal.hu/image/sauer3s.jpg.html?PHPSESSID=8fba99d2ca385994fa7efbed6e50e3e8
http://www.klauzal.hu/image/sauer3s.jpg.html?PHPSESSID=8fba99d2ca385994fa7efbed6e50e3e8


Medical consequencies of mechanical 

vibrations, 

tremor
Tremor: unintentional oscillation (vibration) of part 

of the body (mainly arms or hands). 

More than 10 different types of tremors are 

identified: the most frequently occuring tremors 

are 

- the physiological tremors,

- the increased physiological tremors, 

- the essential tremors (ET), and

- the Parkinson-tremors (PT) manifested in 

Parkinson disease.  

The frequency ranges of the tremors are 

characteristics but may be overlapped: 

< 4 Hz cerebellar and Holmes-tremor,

4 – 6 Hz 80% of Parkinson tremor and 50% of ET,

6 - 11 Hz physiological tremor, 50% of essential 

tremors and 20% of tremor appearing in 

Parkinson-disease and

> 11 Hz orthostatic tremor. 



Medical consequencies of mechanical 

vibrations, 

intervention radiology, lithotripsy

Endoscopic retrograde 

colangiopancreatography.

Large stone in ductus 

choledochus.

The stone of ductus 

choledochus is in the 

basket of the 

intraendoscopic and 

mechanical litotriptor.

Breaking the stone in the 

intraendoscopic mechanical 

litotriptor: the basket became 

smaller.



Effects of mechanical (infra)oscillations 

on human body

J.R. Cameron and J.G. Skofronick, 1978



Medical consequencies of mechanical 

vibrations, 
laser operation in ophthalmology, KO

Mechanical vibrations (that lead to shock waves) are produced in the eye bulb if the 

breaking power of the cornea is designed to modify (“throw away your glasses”) by a 

series of high energy (UV) laser light pulses (graduate ablation (evaporation) of the 

layers of the cornea by intense laser flashes). It is called “sculpture of the cornea”. 

Similar physical phenomena arise when the head of a boxer is hit by a strong and 

sudden punch (e.g. KO). The liquid brain closed in the solid skull (cranium) is exposed to 

heavy oscillations and may suffer severe damages. 

http://www.google.hu/imgres?imgurl=http://www.origo.hu/i/0903/20090305szemszeme2.jpg&imgrefurl=http://www.origo.hu/tudomany/20090306-a-szem-osszetettsege-is-a-termeszetes-kivalsztodas-eredmenye.html&h=330&w=580&sz=206&tbnid=FI_YpIFSVPwYhM:&tbnh=76&tbnw=134&prev=/images%3Fq%3Demberi%2Bszem&zoom=1&q=emberi+szem&hl=hu&usg=__xMCeYsra61gneYCfPURy5im37_8=&sa=X&ei=17CdTIveFoOTswa9h8zmDg&ved=0CAgQ9QEwAA
http://www.google.hu/imgres?imgurl=http://www.origo.hu/i/0903/20090305szemszeme2.jpg&imgrefurl=http://www.origo.hu/tudomany/20090306-a-szem-osszetettsege-is-a-termeszetes-kivalsztodas-eredmenye.html&h=330&w=580&sz=206&tbnid=FI_YpIFSVPwYhM:&tbnh=76&tbnw=134&prev=/images%3Fq%3Demberi%2Bszem&zoom=1&q=emberi+szem&hl=hu&usg=__xMCeYsra61gneYCfPURy5im37_8=&sa=X&ei=17CdTIveFoOTswa9h8zmDg&ved=0CAgQ9QEwAA


Medical consequencies of mechanical 

vibrations, 
sport injuries, accidents

Athletes jumping up and down in competitive way (e.g. basketball or handball players) 

may suffer severe consequences (damage) due of vibrations evoked by large forces in 

their bodies. 

Chronic overload of 

Achilles tendon.
Injuries of the bands. Fracture of bones.



Principal definition: a physical quantity makes oscillation (in strict (mathematical) sense 

of the word) if its value is periodic function of the time t: 

)()( Ttgtg 
Here g(t) denotes the actual value of the physical quantity at time t. The time of period T

is the shortest time interval after which the physical quantity takes the same value as it 

had at time t. Its reciprocal (inverted) value is called frequency: f = 1/T, its dimension is 

1/time and its unit is 1/s = 1 Hz. 

For example, if the heart beats 50 in a minute, then its frequency is 

f = 50 (min)–1 = 50/60 Hz and its time of period is T = 60/50 s.



More generally, we talk about oscillations (vibrations) even in the lack of strict 

periodic changes of the physical quantity versus time. If the periodic character 

of the physical quantity can be recognized, the motion is frequently called as 

oscillation (e.g. damped oscillation).

)sin()(   tAtg

Classification: according to its actual mathematical form, the function g(t) may 

include several types of oscillations.

Simple harmonic oscillation (sine/cosine oscillation): 

where A denotes the amplitude, ω is the angular frequency (2π/T), ωt +α is the 

phase and α is the initial phase. (It is recommended to measure the phase here 

not in degrees but in radians.) The simple harmonic oscillation is described by a 

sole sine function of the time.

Anharmonic oscillation: the physical quantity performs simultaneously finite 

(see e.g. the Lissajous-curves) or infinite (see the Fourier-theorem) numbers of 

harmonic oscillations. Typical example is the saw-tooth vibration. If a slow and 

long inspiration is followed by a sudden expiration periodically then the chest 

volume describes a saw-tooth vibration.



Simple harmonic oscillation.
Kinematic description. We initiate from the position-time relationship and 

derive other physical quantities.

The position (x coordinate) vs. time: 

)sin(   tAx

The velocity:

)cos(v   tA
dt

dx

has maximum while crossing the origin at times t = 0, T/2, T, ... and 

disappears (v = 0) at the turning points (amplitudes) of the oscillation at 

times t = T/4, 3T/4, ....

The acceleration:

xtA
dt

d
a  22 )sin(

v


which is proportional to the deviation from the origin and shows in opposite 

direction therefore it is directed always to the equilibrium position (origin).



Simple harmonic oscillation.
Dynamic description. Substitute the position-time function of the movement in the 

principal law of the dynamics (Newton’s 2nd law):

xkxmamF  2

The directional force (spring constant) :

2

2 2










T
mmk




The time of period of the harmonic oscillation:

k

m
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The time of period is directly proportional to the square root of the mass (if k is constant)  

and indirectly proportional to the square root of the directional force (if m is unchanged).



Energy of the mass 

under harmonic oscillation.
Because the field of force is conservative, the total mechanical energy (the sum of the 

kinetic and potential energies) will remain constant. The energy is not dissipated: 

constant
2

1

2

1
v

2

1 2222

total  AmkxmE 



Superposition of harmonic 

oscillations.

)sin(21   tAxxx

1. Addition (superposition) of two unidirectional vibrations.

a) The frequencies are equal.
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The resultant oscillation is the simple (algebraic) sum of the components:
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Special cases:

-If the phases are equal (the two component vibrations are “in phase”, α0 = 0), then the amplitudes of the components are summed up: A = A1 + A2, 

and the resultant phase constant coincides with that of the components: α = 0. This is called constructive superposition.

- If the vibrations have opposite phases (α0 = π), then the difference of the amplitudes should be taken: A = 

, and the resultant phase is equal to the phase of the component of larger amplitude. If A1 = A2, then A = 0, i.e. the two vibrations cancel (quench)

each other (see later the similar effect of interference of waves of sound or light). This phemonenon is called destructive superposition.



Superposition of harmonic oscillations.

b) The frequencies are different.

)sin(

sin

0222

111









tAx

tAx

The resultant oscillation cannot be taken to the form of 

)sin(21   tAxxx

consequently it is not a harmonic oscillation. In addition, it is even not a periodic 

motion. The resultant motion will be periodic only if the ratio of the frequencies 

of the two components (ω1/ω2) is a rational number. If this is the case, then 

ω1 = n1·ω and ω2 = n2·ω (n1 and n2 are relative prime integer numbers), and the 

values of the function

)sin()sin( 02211   tnAtnAx

will be repeated in a time of period T = 2π/ω.



Superposition of harmonic 

oscillations, the beats.
For the sake of simplicity, 

- the amplitudes of the two oscillations are the same and 

- the phase difference is zero:
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tAx
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The resultant oscillation is
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The beats.



Superposition of perpendicular oscillations, 

the Lissajous-curves.
a) The frequencies are the same. The resultant oscillation is generally “elliptic 

oscillation” (elliptically polarized oscillation): 

)sin(sin   tBytAx
b) The frequencies are different. 

)sin(sin ba   tBytAx



Example: elliptically polarized 

oscillation

)sin(sin   tBytAx

Initial phase

α

x y Equation of 

the curve

Plot

0o A· sin(ωt) B· sin(ωt)

90o A· sin(ωt) B· cos(ωt)

180o A· sin(ωt) -B· sin(ωt)

270o A· sin(ωt) -B· cos(ωt)
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Example: elliptically polarized 

oscillation for arbitrary initial phase

By elimination of the time, t ((sin ωt) and és (cos ωt) are substituted by expressions of x):
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This is the equation of a second order curve, 

which is an ellipse. The x,y coordinates can take 

finite (A or B) values only.

Two perpendicular and harmonic vibrations of 

equal amplitudes and frequencies result in elliptic 

oscillation.

The frame of the ellipse is a rectangle of 2A and 

2B side lengths with its center in the origin.



Decomposition of the oscillations into 

harmonic oscillations; the Fourier theorem.

The Fourier-theorem: if g(t) is a periodic function of the time, 

then it can be decomposed into the sum of sine and cosine functions in one 

way only where the amplitudes (Ai and Bi, i = 0,1,2,...) of the harmonics 

(components) are different and the frequencies ωi = i·ω (i = 1,2,...) are integral 

multiples of the fundamental frequency ω:

)()( Ttgtg 

g(t) = A0/2 + A1cosωt + A2cos2ωt + ...+ B1sinωt + B2sin2ωt +...
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where the coefficients (amplitudes) Ai and Bi are determined by the following 

integrals:



Example: Fourier-analísys of the step function

...)7sin
7

1
5sin

5

1
3sin

3

1
(sin

1
)(  tttttx 





Damped oscillations.



Oscillation of Voigt-body

(the damping is small)

dt

dx
xk

dt

xd
m  

2

2

























m

k

m
0

2




)sin(    teAx t
22

0  



Aperiodic movement of the Voigt-body,

the damping is large κ > ω0
The analytic solution with x(t=0)=0 and v(t=0)=v0 initial conditions:
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The initially deviated body 

approaches the equilibrium 

position from one side only 

and does not swing over 

the other side at all (see 

e.g. the movement of a 

deviated pendulum moving 

in an extremely viscous 

fluid (e.g. In honey). 



Forced (induced) vibrations.

If the system is exposed to periodic and external force (which will act not promptly but 

continuously), then the system will make forced (induced) vibrations. The dynamic 

equation of the motion can be created from that of the damped oscillation extended by 

the periodic external driving force: 

tF
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In the case of κ < ω0 (the damping is small), the general solution can be given 

in analytical form:
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Resonance

Amplitude Phase
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Summary of (absolute) basic 

definitions and expressions

1. The amplitude of an oscillation (A) is the maximum displacement from the 

equilibrium position. 

2. The period of oscillatory motion (T) is the shortest time that elapses between 

successive occurrences of the same configuration. 

3. The frequency of oscillatory motion (f) is defined as the number of 

oscillations that occur per unit time (this is also known as the linear frequency, 

to distinguish it from the angular frequency ω): f = 1/T (and ω = 2π/T). 

4. Harmonic motion is a special type of oscillatory motion that results from a 

restoring force, F (or torque) which is directly proportional to the displacement 

from equilibrium (Δx) and directed always towards the equilibrium position: 

F = ―k·Δx. The proportionality factor, k is called directional force constant. 

Simple harmonic motion is characterized by solutions that involve the „harmonic 

functions” (sine and cosine) and a period that is independent of the amplitude. 



5. The phase constant (α) is a constant in the argument of the sine (or cosine) 

function used to describe the oscillatory motion: x = A sin(ω·t + α). It is 

determined by the initial state of the system.

6. A simple (or mathematical) pendulum consists of a point particle of mass m, 

swinging from a massless string of length l. The period T of small oscillations is 

independent of the mass and the amplitude, and depends only on the length of 

the string and the acceleration of gravity, g: T = 2π√l/g.

If the rotational inertia of the pendulum differs from that of a point particle, we 

have a physical pendulum. If the object is pivoted at a distance L from its center 

of mass and allowed to swing with small amplitude, the period T of oscillations 

is T = 2π√I/mgL, where I is the moment of inertia for rotations about the pivot.

7. Oscillations with decreasing amplitude constitute damped harmonic motion

during which dissipative forces (friction, fluid viscosity, etc.) decrease the 

amplitude of the oscillation with time because the mechanical energy of the 

system is gradually converted into thermal energy.



8. To maintain constant amplitude if damping forces are present, it is necessary 

to replenish the mechanical energy of the system. The resulting oscillations are 

known as driven harmonic motion.

9. If the frequency of the driving force matches the natural frequency of 

oscillation of the system, the system is in resonance. In resonance, the 

amplitude of the oscillations reaches a maximum and the phase shift between 

the oscillating driving force and the oscillating motion of the system is 

π/2 (= 90o).



Problems for home works and/or seminars

1) A basketball player of mass 100 kg lifts his center of mass by 1 m on jumping up. On 

landing, he needs 10 cm (elastic landing) or 1 cm (inelastic damping) path to damp 

completely his speed. Estimate the forces of damping (evoked in the vertebral column) 

on landing! 

2) The mechanical role of the tiny bones in the human middle ear is approximated by the 

following model: a point mass of m = 2 mg is anchored to the ear drum and to the oval 

window by two springs of directional forces k1 = 72 N/m and k2 = 7.2 N/m, respectively. 

How much is the (self) frequency of this system? 

3) The mass of an unloaded car is 800 kg. The body of the car will sink 6 cm after 

getting in 5 persons of total mass of 500 kg. How much is the time of period of vibration 

of the unloaded car and loaded with passengers?

4) A log floating on the surface of the water is pressed slightly down and left alone. 

Determine the frequency of the swinging log!  

5) The walking can be considered as movement of the unloaded leg as physical 

pendulum from the back ahead in a passive way (without intervenience of the muskels 

of this leg). Estimate the speed of walking if the length of one foot step is s = 0.8 m and 

the unloaded leg of length l = 1 m is swinging around the hip as pivot axis! 



Problems for home works and/or seminars
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6) Demonstrate the basic laws of superposition of vibrations using computer graphics 

methods! Construct simple Lissajous-curves!

7) The Fourier-decomposition of triangle-shaped vibration of unit amplitude is

By plotting the (sum of the) components, demonstrate that a few components give 

acceptable approximation.  

8) Give the equation of motion of a point mass attached to a spring and a damper 

coupled in series (Maxwell body)!

9) A mosquito is hitting with his leg the Szeged downtown bridge with a frequency 

identical with the self frequency of the bridge. In contradiction to the expectations of the 

catastrophe of resonance, the bridge will not collapse. Why not? 

10) The springs of the wagons absorb periodic shocks at the connections of the rails and 

vibrations will be evoked. The compression of the springs is 1.6 μm upon 1 N load, the 

mass of the wagon is 22 tons and the length of the rails is 18 m. At what speed is the 

amplitude of the vibration the largest?  


