The blood-brain barrier

Eszter Farkas

September 12, 2018

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The discovery of the blood-brain barrier

 Paul Ehrlich (1854-1915): injection of anilin-dye into the circulation → every organ stained except the central nervous system

- Edwin Goldmann (1913): injection of the dye into the spinal cord → staining of the brain, but not other organs
 - \Rightarrow The existence of the blood-brain barrier: the isolation of the brain from the periphery

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS University of Szeged, Faculty of Medicine, Faculty of Science and Informatics

Transition from arterioles to capillaries

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The cerebral capillary network

- Dense capillary network: average intercapillary distance: 40µm
- Large surface: endothelial layer: 100 cm²/g
- Volume:

the mass of endothelial cells constitutes 0.1% of the brain tissue

Petzold and Murphy, Neuron, 2011

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The fine organization of the cerebral capillary network

Ultrastructure of the blood-brain barrier

Wall thickness: 40% of that in other endothelial cell types (0.3-0.5 μ m) \rightarrow Shortened transport time for nutrient trafficing

Farkas& Luiten, Progr Neurobiol, 2001

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Endothelium: No fenestrations no free tanscellular diffusion

http://www.vetmed.vt.edu/education/curriculum/vm8054/labs/Lab12b/Lab12b.htm

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Endothelium: Tight junctions \rightarrow no paracellular diffusion

The cellular basis of the blood-brain barrier. (A) Diagram of a brain capillary in cross section and reconstructed views, showing endothelial tight junctions and the investment of the capillary by astrocytic end feet. (B) Electron micrograph of boxed area in (A), showing the appearance of tight junctions between neighboring endothelial cells (arrows). (A after Goldstein, Goldstein and Betz, 1986; B from Peters et al., 1991.)

http://www.daviddarling.info/encyclopedia/B/blood-brain_barrier.html

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The molecular structure of tight junctions

Cholesterol-rich membrane

Claudins: skeleton Occludin: regulatory protein → electrostatic resistance

ZO: zonula occludens proteins: anchor that defines the position of the juction

Huber et al., TINS, 2001

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Endothelium: Minor pinocytic transport \rightarrow reduced penetration

http://www.benbest.com/cryonics/protocol.html

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Endothel: thick basement membrane

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Endothel: increased amount of mitochondria (up to 10% of the endothelial volume) \rightarrow metabolic capacity to maintain the barrier

Oldendorf et al., Ann Neurol, 1977

Transport throught the BBB: blood - brain (influx)

Transport throught the BBB: brain → blood (efflux)

- P-glycoprotein:
- ATP-dependent
- Active backtransport of hydrophobic drugs

The Na⁺-dependent transport systems:

- Elimination of nonessential AAs, toxic AAs,
- Maintainance of the optimal concentrations of all other AAs.

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The enzymatic barrier

Enzymatic barrier: degradation of neuroactive substances

(*: general BBB marker)

Enzyme	Function
Alkaline-phosphatase*	Purin & pirimidin metabolism
Monoamine oxidase	Catecolamine inactivation
Aminopeptidase A	Angiotensine metabolism
Endopeptidase	Break-down of neuropeptides (pl. bradykinin, dynorphin, neurotensin)
γ-glutamil-transpeptidase*	Leukotrien conversion C4 \rightarrow D4

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Brain areas devoid of blood brain barrier

Function:

- Hormon production
- Sensory function
- Production of CSF

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

University of Szeged, Faculty of Medicine, Faculty of Science and Informatics

Circumventricular organs:

- Pineal gland (3)
- Median eminence
- Neurohypophysis (5)
- Subfornical organ (1)
- Subcomissural organ (2)
- Area postrema (4)
- Organum vasculosum of lamina terminalis (6)
- Choroid plexus

The blood-CSF barrier

Summary of the barriers of the central nervous system

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Tracers to test the integrity of the blood-brain barrier

- In experimental animals
- Infusion of Evans-blue: labeling the extravasation of molecules with large molecular weight (60-70 kDa)
- Na⁺-fluorescin: labeling the extravasation of molecules with low molecular weight (0,3-0,4 kDa)
- Macroscopic observation: the brain tissue is stained – qualitative analysis
- Spectroscopy: quantitative analysis

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Tracers to test the integrity of the blood-brain barrier

Farkas IG et al., Acta Histochem, 2003

Farkas G. et al., Neurosci Lett, 1998

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Artificial blood-brain barrier models

Pericyte

Astrocyte

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Artificial blood-brain barrier models

Nakagawa et al., Cell Mol Neurobiol, 2007

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Blood-brain barrier disruption

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Inflammation at the BBB

- Causes: infection, trauma, necrosis (stroke)
- Inflammatory mediators activate the contractile machinery of the endothelial cells severing the paracellular junctions.
- Permeability increases + cellular transmigration is made possible.

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Consequence of inflammatory BBB opening

Elimination of pathogens, necrotic tissue

But also immune-mediated damage to "innocent bystanders"

Edema formation that can impair blood flow and transcapillary transport

Toxic metabolites or xenobiotics can access the brain tissue

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS University of Szeged, Faculty of Medicine, Faculty of Science and Informatics

Leukocyte transmigration through the bloodbrain barrier

Ransohoff et al., Nat. Rev. Immunol., 2003.

The central nervous system (CNS) has been characterized as an immunologically privileged site in the past, but it should more accurately be viewed as immunologically specialized.

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The blood-brain barrier, Sept. 12, 2018

Leukocyte trafficking through the blood vessel wall

- Selectin-dependent tethering and rolling,
- Chemokine-mediated activation,
- Integrin-dependent firm adhesion and spreading,
- Extravasation into the underlying tissue.

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Leukocyte transmigration through the blood-brain barrier

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Extravasation of tumor cells

Figure 1. Extravasation of tumor cells through the BBB. Successful metastasis formation is dependent on arrest of tumor cells in the microvessels, followed by the adhesion and transmigration step. Extravasating tumor cells survive for days in the capillary lumen before transmigration is completed. During this process, tumor cells activate the Rac and PI3K signaling pathways and release TGF- β and proteases. CECs may also enhance transendothelial migration of metastatic cells through activation of COX-2 and secretion of MMP-2. Reactive astrocytes and microglia are recruited at initial steps of extravasation. Astrocytes may secrete cytokines, chemokines and proteases to enhance transendothelial migration of tumor cells. Microglia may also enhance invasion of the brain serving as transporters for malignant cells. Wilhelm et al., JCBFM, 2017

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Bone marrow stem cell transmigration through the blood-brain barrier

- Female patients with leukemia
- Bone marrow transplantation from a male relative
- Examination of brain tissue
- Cell clusters containing Y-chromosome in the brain
- Most of them are glia
- A small percentage is neuron (7/10 000)

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Bone marrow stem cell transmigration through the blood-brain barrier

Green: NeuN Blue: nucleus Red: Y-chrom.

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Bone marrow stem cells: therapeutical potential for stroke?

- Bone marrow transplantation from male mice to females, male bone marrow cells express green fluorescent protein (GFP)
- Middle cerebral artery occlusion \rightarrow stroke
- Histological examination of the brain: labeling/visualization of GFP and Y-chromosomes
- Labeled cells detected in the cerebral endothelial cells of small vessels
- Labeled, neuron-like cells in the brain

The blood-brain barrier, Sept. 12, 2018

GFP

Bone marrow stem cells: therapeutical potential for stroke?

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Bone marrow stem cells: therapeutical potential for stroke?

- Focused on restorative processes
- Longer time window of opportunity than neuroprotective therapies (within the first week after stroke)

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Hindered blood-brain barrier function

- Amyloid angiopathy Alzheimer's disease
- Basal membrane thickening aging, neurodegenerative disease, hypertension
- (Atherosclerosis) hypertension

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Basal membrane thickening

- Aging, dementia, hypertension
- Hindered transport

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Drugs and the BBB

- $\,\circ\,$ The BBB hinders drug delivery to the brain.
- It poses a problem at the treatment of central nervous system diseases.

Potential solutions:

- Increased lipid-solubility of the drug
- Transient opening of the BBB (e.g. osmotic)
- "Wrapping" drugs (liposomes)
- Intranasal pathway

Drugs and the BBB

Methods of Circumventing the Blood-Brain Barrier

Routes and methods of administration	Tailored and carrier drugs
High dose	Increased lipid solubility
Intrathecal	Lipophilic carrier agents (liposomes)
Intraventricular	Cationization
Intra-arterial (carotid artery)	Glycosylation
Non-pharmaceutical methods	Receptor-mediated transport
Surgery	Mechanical Disruption
Radiation therapy	BBB disruption
	- Osmotic
	- Pharmacological
	- Biochemical
	Hypertension

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Increased lipid solubility

- Dihydropyridines: Ca²⁺ channel antagonists
- For the treatment of hypertension
- Nimodipine: increased lipid solubility: for the treatment of stroke

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Drugs and the BBB

Methods of Circumventing the Blood-Brain Barrier

Routes and methods of administration	Tailored and carrier drugs
High dose	Increased lipid solubility
Intrathecal	Lipophilic carrier agents (liposomes)
Intraventricular	Cationization
Intra-arterial (carotid artery)	Glycosylation
Non-pharmaceutical methods	Receptor-mediated transport
Surgery	Mechanical Disruption
Radiation therapy	BBB disruption - Osmotic - Pharmacological Discharging
	- Biochemical Hypertension
	rigpertension

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Osmotic opening of the blood-brain barrier

- Intra-carotid infusion of hyperosmotic solutions (for example: mannitol)
- Transient shrinkage of the endothelial cells → losening and opening of the tight junctions
- Defining variables:
 - Length of infusion
 - Osmolarity of the solution
- Influencing physiological parameters:
 - Concentration of blood gases
 - Cardiac output
- Therapeutical target: pl. chemotherapy of brain tumors

Drugs and the BBB

Methods of Circumventing the Blood-Brain Barrier

Tailored and carrier drugs
Increased lipid solubility
Lipophilic carrier agents (liposomes)
Cationization
Glycosylation
Receptor-mediated transport
Mechanical Disruption
BBB disruption
- Osmotic
- Pharmacological
- Biochemical
Hypertension

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Application of liposomes

- Known for 40 years (Bangham)
- Small, artificial phospholipid vesicles
- For medicines targeting the CNS
- In stroke treatment: e.g.
 SOD

Liposomes

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

Intranasal treatment strategies

- Sensory nerve endings:
 - n. olfactorius
 - n. trigeminalis
- Nonisnvasive
- NGF, IGF, FGF

- Way of passage:
- Image courtesy of Robert Thorne, PhD, Alzheimer's Research Center, Regions Hospital, St. Paul, MN.

FIGU

- Intraneuronal: axonal transport, hours to days → for specified brain regions
- Extraneuronal: perineuronal, minutes \rightarrow brain parenchyma, CSF

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS

The blood-brain barrier, Sept. 12, 2018

"I think you should be more explicit here in step two."

DEPARTMENT OF MEDICAL PHYSICS AND INFORMATICS