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Mechanical vibrations (oscillations) 

Lecturer: Péter Maróti 

 

Every day’s experience is the production, propagation and damping of wide variety of 

mechanical vibrations in 

human body. As early as 

in 1761, L. Auenbrugger 

introduced the traditional 

method of percussion 

(sounding) in the medical 

investigation. A Hamilton 

(1918) carried out the first 

systematic investigations 

among workers in the 

stone-quarry breaking 

solid rocks with 

pneumatic hammer driven 

by compressed air. 

Athletes jumping up and 

down in competitive way 

(e.g. basketball or 

handball players) may 

suffer severe 

consequences (damage) 

due of vibrations evoked 

by large forces in their 

bodies. Similar 

mechanical vibrations (that lead to shock waves) are produced in the eye bulb if the breaking 

power of the cornea is designed to modify (“throw away your glasses”) by a series of high 

energy (UV) laser light pulses (graduate ablation (evaporation) of the layers of the cornea by 

intense laser flashes). It is called “sculpture of the cornea”. Similar physical phenomena arise 

when the head of a boxer is hit by a strong and sudden punch (e.g. KO). The liquid brain 

closed in the solid skull (cranium) is exposed to heavy oscillations and may suffer severe 

damages.  

The oscillations can be classified as driven oscillations (the body or part of the body 

are exposed to external and periodic force) and self (own) oscillations (the body or part of the 

body are free to oscillate). The majority of the organs of the human body have low 

frequencies of self oscillations (see the figure) which are below the hearing (sensing) 

frequency limit of the human ear (infra oscillations that evoke infra sounds of frequencies 

smaller than 20 Hz). Mechanical external vibrations of low (infra) frequencies may cause 

damage in the human body without evoking alarming reactions by the hearing. The effect may 

be enhanced by resonance of the organ which has identical self frequency as the external 

periodic mechanical vibration.  

The different organs are in mechanical coupling with each other. The complex set of 

mechanical vibrations can be described by an extended network of elastic (spring) and 

damping elements. The goal of the present lecture is to introduce you into the world of 

interacting vibrations that may exert significance consequences to the function of the human 

body. 
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Principal definition: a physical quantity makes oscillation (in strict (mathematical) sense of 

the word) if its value is periodic function of the time t:   

)()( Ttgtg  . 

Here g(t) denotes the actual value of the physical quantity at time t. The time of period T is the 

shortest time interval after which the physical quantity takes the same value as it had at time t. 

Its reciprocal (inverted) value is called frequency: f = 1/T, its dimension is 1/time and its unit 

is 1/s = 1 Hz. For example, if the heart beats 50 in a minute, then its frequency is  

f = 50 (min)
–1

 = 50/60 Hz and its time of period is T = 60/50 s. 

More generally, we talk 

about oscillations 

(vibrations) even in the 

lack of strict periodic 

changes of the physical 

quantity versus time. If the 

periodic character of the 

physical quantity can be 

recognized, the motion is 

frequently called as 

oscillation. For example: 

the damped oscillation 

does not belong to the 

cathegory of oscillations in the strict sence of the word (it is not periodic), however, we call it 

as oscillation because of the swinging character of the motion.    

Classification: according to its actual mathematical form, the function g(t) may include 

several types of oscillations. 

Simple harmonic oscillation (sine/cosine oscillation): )sin()(   tAtg , 

where A denotes the amplitude, ω is the angular frequency ( T/2  ), ωt+α is 

the phase and α is the initial phase. (It is recommended to measure the phase here 

not in degrees but in radians.) The simple harmonic oscillation is described by a 

sole sine function of the time. 

Anharmonic oscillation: the physical quantity performs simultaneously finite (see e.g. 

the Lissajous-curves) or infinite (see the Fourier-theorem) numbers of harmonic 

oscillations. Typical example is the saw-tooth vibration (see the bottom part of the 

figure). If a slow and long inspiration is followed by a sudden expiration 

periodically then the chest volume describes a saw-tooth vibration. 

Simple harmonic oscillation. 
Consider a point of mass m that carries out harmonic oscillation along axis x with equilibrium 

position at x = 0.  

Kinematic description.  

Position (coordinate): )sin(   tAx . From the position-time relationship, other 

kinematic characteristics can be derived. 

Velocity: )cos(v   tA
dt

dx
, which has maximum while crossing the origin at times  

t = 0, T/2, T, ... and disappears (v = 0) at the turning points (amplitudes) of the 

oscillation at times t = T/4, 3T/4, .... 

Acceleration: xtA
dt

d
a  22 )sin(

v
 , which is proportional to the deviation 

from the origin and shows in opposite direction therefore it is directed always to the 

equilibrium position (origin). 
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Examples. What is the maximum of the acceleration of the heart beating 120 in a minute 

(supposing harmonic motion of the heart)? amax = –ω
2
A = (2π/T)

2
A = 1.58 m/s

2
, which is one 

sixth of the gravitational constant (g = 9.81 m/s
2
). 

Estimate the maximum of the acceleration of the medium transferring ultrasound of 

frequency 1 MHz and of amplitude A = 10 nm (the radius of the hydrogen atom is ~ 0.1 nm)!  

amax = –ω
2
A = (2πf)

2
 ·A = 4·10

5
 m/s

2
, which is forty thousand times larger than the 

gravitational constant (g = 9.81 m/s
2
). The best trained pilots can survive 5-10 g (whole body) 

acceleration for short period of time, only. Under these conditions, take care of the cavitation!   

  Dynamic description. Substitute the position-time function of the movement in the 

principal law of the dynamics (Newton’s 2
nd

 law): 

xkxmamF  2  

The force is directly proportional and is oppositely directed to the elongation (see the Hooke’s 

law of the elasticity: σ = E·ε, where σ = F/A is the mechanical tension, E denotes theYoung’s 

modulus of elasticity and ε = Δl/l is the relative elongation). This is the dynamic condition of 

production of the simple harmonic oscillation.  

Forces directed permanently to the stable equilibrium position will create oscillating 

motions. However, simple harmonic oscillation will be established only if the actual force is 

proportional to the elongation.  

The proportionality factor in the expression of the force is called directional force (spring-

constant): 
2

2 2










T
mmk


 , 

its dimension is force/distance and the unit is N/m. 

The time of period of the harmonic oscillation is: 

k

m
T 2 , 

i.e. the time of period is directly proportional to the square root of the mass (if k is constant)  

and indirectly proportional to the square root of the directional force (if m is unchanged). 

  Energy of the mass under harmonic oscillation. The kinetic energy (½ mv
2
) and the 

potential (elastic) energy (½ kx
2
) of the mass oscillate in opposite phase: if the kinetic energy 

has a maximum, then the potential energy is at minimum and vice versa. Because the field of 

force is conservative, the total mechanical energy (the sum of the kinetic and potential 

energies) will remain constant. The energy is not dissipated: 

constant
2

1

2

1
v

2

1 2222

total  AmkxmE  . 

If the potential energy (½ kx
2
) is plotted against the elongation (x) in a rectangular (Descartes) 

coordination system then parabola with upward oriented branches will be obtained. The total 

energy of the mass with 2 times, 3 times, etc. larger amplitude will be 4 times, 9 times, etc. 

larger (if the frequency remains constant). Similar quadratic relationship is valid for the 

frequency (if the amplitude remains constant). 

 Creation of harmonic oscillation. The spring produces elastic force which is 

proportional to the elongation and shows toward the equilibrium position. Therefore, a mass 

attached to a spring carries out harmonic oscillation. At small amplitudes, both the 

mathematical and the physical pendulum make harmonic oscillations. 

 Superposition of harmonic oscillations. A point under the influence of two 

independent effects (forces) can undertake two independent oscillations simultanously. The 

vibrations can be summed up without mutual disturbance. The general superposition of two 

arbitrary linear oscillations can be traced back to two principal cases.   

1. Addition (superposition) of two unidirectional vibrations. 
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a) The frequencies are equal. 

)sin(

sin

022

11









tAx

tAx
. 

The resultant oscillation is the simple (algebraic) sum of the components: 

)sin(21   tAxxx ,  

where 

021

2

2

2

1 cos2 AAAAA   and 
021

02

cos

sin
tg






AA

A


 . 

The resultant vibration has the same direction and frequency as the components and the 

amplitude A together with the phase constant α depend on the amplitudes A1 and A2 and the 

mutual phase constant α0 of the components. 

Special cases: 

- If the phases are equal (the two component vibrations are “in phase”, α0 = 0), then the 

amplitudes of the components are summed up: A = A1 + A2, and the resultant phase 

constant coincides with that of the components: α = 0. This is called constructive 

superposition. 

- If the vibrations have opposite phases (α0 = π), then the difference of the amplitudes should 

be taken: A = 21 AA  , and the resultant phase is equal to the phase of the component of 

larger amplitude. If A1 = A2, then A = 0, i.e. the two vibrations cancel (quench) each other 

(see later the similar effect of interference of waves of sound or light). This phemonenon 

is called destructive superposition. 

 b) The frequencies are different.. 

)sin(

sin

0222

111









tAx

tAx
. 

Now, the resultant oscillation cannot be taken to the form of )sin(21   tAxxx , 

consequently it is not a harmonic oscillation. In addition, it is even not a periodic motion. The 

resultant motion will be periodic only if the ratio of the frequencies of the two components 

(ω1/ω2) is a rational number. If this is the case, then ω1 = n1·ω and ω2 = n2·ω (n1 and n2 are 

relative prime integer numbers), and the values of the function 

)sin()sin( 02211   tnAtnAx will be repeated in a time of period T = 2π/ω.  

Special case: superposition of two unidirectional harmonic oscillations with very close 

frequencies; the beats.  

For the sake of simplicity, the amplitudes of the two oscillations are the same and the phase 

difference is zero:  

tAx

tAx

22

11

sin

sin








. 

The resultant oscillation is 

ttAxxx
2

sin
2

cos2 2121
21

 



 . 

As ω1 ≈ ω2, the cosine factor changes with time much slower than the sine factor. The 

resultant vibration can be considered as a sine oscillation with angular frequency of 
2

21  
, 

and amplitude of tA
2

cos2 21  
that changes relatively slowly between 2A and 0. This 

phenomenon is called beat and the time elapses between two neighboring maxima of the 
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amplitude is called period of beat, Tbeat. This value is half of the period of the 

function tA
2

cos2 21  
, (which is 

21

22








), i.e. 

2121

beat

12

ff
T










. 

The frequency of the beat is
beatbeat /1 Tf  , the difference of the frequencies of the two 

component oscillations: 

21beat fff  . 

 
The phenomenon of beat is best and easiest to recognize in hearing (acoustics): if two tuning 

forks of frequencies 440 Hz and 446 Hz are oscillating simultaneously, then 6 pulsations 

(beatings) can be heard in a second. If the amplitudes are not equal, then the minima and 

maxima are less distinct.    

2. Superposition of perpendicular oscillations, the Lissajous-curves.  

 a) The frequencies are the same. The resultant oscillation is generally “elliptic 

oscillation” (elliptically polarized oscillation): 

)sin(sin   tBytAx , 

which means that the oscillating point describes an ellipse in the xy plane. This can be proven 

if the common parameter, the time t is eliminated from the two equations. The size and 

position of the ellipse are determined by the amplitudes A and B and the phase difference α 

(see the first line of the figure). 

  
 



 6 

 b) The frequencies are different. Although both the x and the y coordinates change 

periodically as a function of time in the basic equations 

)sin(sin ba   tBytAx , 

the resultant motion is not necessarily periodic. It will be periodic only, if the ratio of the two 

frequencies (ωa/ωb) is a rational number (see the figure where ωa/ωb = ½, 1/3, ¼, 3/2, 5/6 and 

9/8 and A = B). In opposite cases (e.g. if ωa/ ωb = 2  which is an irrational number), the 

curves in the xy plane are not closed, i.e. the moving point will never return to the initial 

position.  

 Decomposition of the oscillations into harmonic oscillations; the Fourier theorem. We 

saw previously that the sum of harmonic oscillations whose frequencies were integral 

multiples of a fundamental frequency resulted in always periodic processes i.e. oscillations 

(however, not necessarily harmonic oscillations). The inverse problem may be interesting, as 

well: is it possible to decompose a given oscillation into the sum of harmonic oscillations? In 

the case of “normal” (smooth) functions which occur in the practice, the answer is a sound 

and unambiguous YES!  

The Fourier-theorem: if g(t) is a periodic function of the time, i.e. )()( Ttgtg  , then 

it can be decomposed into the sum of sine and cosine functions in one way only where the 

amplitudes (Ai és Bi, i = 0,1,2,...) of the harmonics (components) are different and the 

frequencies ωi = i·ω (i = 1,2,...) are integral multiples of the fundamental frequency ω: 

 

g(t) = A0/2 + A1cosωt + A2cos2ωt + ...+ B1sinωt + B2sin2ωt +... 

 

where the coefficients (amplitudes) Ai and Bi are determined by the following integrals: 

  

,...)3,2,1,0()sin()(
2

)cos()(
2

00

  idttitg
T

Bdttitg
T

A

T

i

T

i  . 

In many practical cases, the function g(t) is well approximated by only a few initial terms of 

the Fourier-series (see the example of the step function in the figure). Algorithms written to 

computers are available for fast Fourier transformation (FFT) of arbitrary periodic functions.  

 
Example: the step function oscillation can be decomposed into the following set of harmonics 

with decreasing amplitudes: 

...)7sin
7

1
5sin

5

1
3sin

3

1
(sin

1
)(  tttttx 


. 
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The sum of the first four terms of the series approximates the step function fairly well (see the 

figure where the contribution of the different terms is color coded). 

The distribution of the amplitudes of the harmonics according the frequencies is called 

spectrum of the Fourier decomposition. The spectrum can be discrete (if the oscillation is 

strictly periodic and the Fourier-series can be applied) or continuous (in the case of aperiodic 

functions when the function is decomposed according to Fourier integral instead of Fourier 

series). The Fourier-transformation (FT) converts the function from the time space into the 

frequency space (t → ω) where different type of (spectral) analysis can be carried out. Typical 

application is the Fourier-transfomation of the infrared (IR) spectra (FTIR) based on which 

specific atomic and molecular vibrations can be detected and separated from millions of other 

vibrations.     

The most trivial application of the Fourier-theorem is the decomposition of sound 

vibration into harmonics (harmonic analysis). The sound is peeled into fundamental vibration 

whose frequency ω determines the pitch level (intonation) of the sound and into several 

harmonics oh frequencies ωi = i·ω (i = 1,2,...) whose amplitudes determine the tonality of the 

sound.  

 

Damped oscillations. 

In living sytems, one can hardly find any manifestations of abstractions (e.g. point of mass, 

solid state, ideal gases and fluids) introduced in physics. Investigating the elasticity of real 

substances, they show generally both elastic (as an ideal spring) and viscous (as real fluids) 

properties. These substances are called viscoelastic materials. If they are forced to oscillate, 

their free oscillation will show monotonously decreasing amplitude. After several passes 

through the equilibrium position, the oscillation will be ceased soon or later (depending on the 

rate of energy dissipation via friction). If the damping is very large, the oscillation will 

perform half a period only, which means that the movement will stop even before passing 

through the equilibrium position (one sided “swinging” or aperiodic threshold).   

In the simplest case, the models describing the oscillations of realistic substances 

consist of two components at least.  

- Linear spring: upon elongation, the force is linearly proportional with and opposite to the 

displacement x: F = –kx. Therefore, the spring obeys the ideal (linear) law of the elasticity 

(Hooke’s law). 

- Vibration absorber (damper): upon deformation, the (friction) force evoked is linearly 

proportional with and 

opposite to the actual 

velocity: F = –ηv, where η 

is the viscosity of the fluid 

in the damper. The 

vibration absorber obeys 

the Newton’s law of 

viscous fluids. The shock 

absorbers are essential and 

well known constituents 

of cars and airplanes.  

From the combinations of 

these two elements, 

several complex 

mechanical models can be 

constructed which can 

describe the principal 
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mechanical (kinematic and dynamic) behaviour of real substances under driven (forced) and 

free oscillations (see the introductory figure (“Xmas tree” model) of the wide range of 

oscillations of the whole or parts of the human body).   

Here, we will deal with the simplest model only. In the Voigt model, the two elements 

(the spring and the damper) are coupled parallel. The displacements x are equal in the two 

branches but the forces are different: F1 = –kx in the branch of the spring and F2 = –ηv in the 

branch of the absorber. The resultant force that acts on the mass m is the sum of the two 

components: F = F1 + F2. The equation of motion (Newton’s 2
nd

 law) is: m·a = –kx – ηv. 

Replacing the acceleration by a = d
2
x/dt

2
 and the velocity by v = dx/dt, the equation will be  

dt

dx
xk

dt

xd
m  

2

2

. 

The solution of this differential equation, x(t) can be given in closed (analytical) form that 

depends on the magnitude of the damping (friction) force. If it is smaller than a definite limit 

then the movement will be periodic (damped oscillation). If, however, the friction is larger 

than this limit, then the movement will not be anymore oscillatory but approaches 

monotonously to the equilibrium position (aperiodic movement).  

Periodic movement: 
























m

k

m
0

2



. In this case, the vibration can be considered as 

harmonic oscillation whose amplitude decreases with time exponentially: 

)sin(    teAx t , 

and the angular frequency of the vibration is 
22

0   , 

where ω0 is the angular frequency of the undamped (κ = 0) oscillation. Both the rate of the 

decrease of the amplitude and the actual angular frequency depend on the degree of the 

damping (κ). The larger is the damping (friction), the larger is the rate of loss of the amplitude 

and the smaller is the actual angular frequency.  As the ratio of two neighboring maxima in 

the same direction is constant, it can be introduced as characteristics of the damping:  

T

n

n e
x

x

x

x

x

x 
24

2

3

1 ... , 

where T = 2π/ω.  

 
 

Aperiodic movement: κ > ω0, i.e. the friction is larger than a definite threshold. The analytical 

solution of the equation of the movement at x(t=0)=0 and v(t=0)=v0 initial conditions is  

 tex t 2

0

2

2

0

2

0 sh
v




 


  , 



 9 

which means that the deviation from the equilibrium position (x = 0) is always unidirectional 

(x remains negative or positive, depending on the initial conditions). During the movement, 

the mass never crosses the equilibrium position but approaches to it only while t → ∞. This is 

a typical motion of a deviated pendulum in highly viscous fluid (e.g. in honey). 

   

Forced (induced) vibrations. Resonance. 

We have to make clear distinction between free and forced oscillations. After prompt 

deviation from the equilibrium state, the oscillating system left alone will carry out free 

(damped or undamped) vibrations as a result of internal forces (elastic force, friction etc.). If 

the system is exposed to periodic and external force (which will act not promptly but 

continuously), then the system will make forced (induced) vibrations. The dynamic equation 

of the motion can be created from that of the damped oscillation extended by the periodic 

external driving force:   

tF
dt

dx
xk

dt

xd
m  sin02

2

 . 

In the case of κ < ω0 (the damping is small), the general solution can be given in analytical 

form: 

     taetAtx t 22

0sin)cos()( , 

where 

 
22

0
22222

0

0 2
tg

4

/






 





mF

A , 

and a and α are integration constants that can be determined from the initial conditions.  

As can be seen from the position-time relationship, while the system follows the 

constraint (first term in the expression), it tries to preserve its own vibration (second term). 

The superposition of the two movements results in an undamped harmonic vibration of 

frequency ω and a damped self oscillation. The latter, however, will be terminated after short 

transient due to the damping and remains permanently the induced A·sin(ωt – φ) harmonic 

oscillation. The amplitude A and the phase difference φ between the driving force and the 

induced vibration depend on the angular frequency ω of the external force.  

 

 
Starting from very low frequencies, the amplitude A increases gradually with increasing 

frequency and reaches maximum at ω = ω0. The amplitude will decrease after further increase 

of the frequency. The amplitude of the induced vibration is at maximum if the frequency of 

the driving force coincides with the frequency of the self oscillation of the system. This 

phenomenon is called resonance and the A = A(ω) function is denoted as curve of resonance. 
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The smaller is the damping of the system κ, the sharper is the curve of resonance. In ideal 

case, the amplitude would tend to infinity in lack of any damping. This is called catastrophe 

of resonance. 

Similarly interesting is the function of the phase shift vs. driving frequency. The phase 

difference monotonously increases from 0 to π/2 and from π/2 to π while the frequency 

increases from 0 to ω0 and from ω0 to infinity, respectively. Although the (forced) oscillating 

system takes over the frequency from the external constrain, it follows the driving force with 

certain delay (phase difference) only. In resonance, the phase delay is π/2, i.e. the F0sin ωt 

driving force will be unidirectional to the actual velocity of the oscillating mass, v = v0cos ωt, 

which means that the external force can accelerate and offer energy to the mass with the 

highest yield. This is the background of the extreme features observed under (catastrophy of) 

resonance.    

 

Summary of (absolute) basic definitions and expressions 

1. The amplitude of an oscillation (A) is the maximum displacement from the equilibrium 

position. 

2. The period of oscillatory motion (T) is the shortest time that elapses between successive 

occurrences of the same configuration. 

3. The frequency of oscillatory motion (f) is defined as the number of oscillations that occur 

per unit time (this is also known as the linear frequency, to distinguish it from the angular 

frequency ω): 
T

f
1

  (and 
T




2
 ). 

4. Harmonic motion is a special type of oscillatory motion that results from a restoring force, 

F (or torque) which is directly proportional to the displacement from equilibrium (Δx) and 

directed always towards the equilibrium position: F = ―k·Δx. The proportionality factor, 

k is called directional force constant. 

Simple harmonic motion is characterized by solutions that involve the „harmonic 

functions” (sine and cosine) and a period that is independent of the amplitude. 

5. The phase constant (α) is a constant in the argument of the sine (or cosine) function used to 

describe the oscillatory motion: )sin(   tAx . It is determined by the initial state of 

the system. 

6. A simple (or mathematical) pendulum consists of a point particle of mass m, swinging from 

a massless string of length l. The period T of small oscillations is independent of the mass 

and the amplitude, and depends only on the length of the string and the acceleration of 

gravity, g: 
g

l
T 2 . 

If the rotational inertia of the pendulum differs from that of a point particle, we have a 

physical pendulum. If the object is pivoted at a distance L from its center of mass and 

allowed to swing with small amplitude, the period T of oscillations is 
mgL

I
T 2 , 

where I is the moment of inertia for rotations about the pivot. 

7. Oscillations with decreasing amplitude constitute damped harmonic motion during which 

dissipative forces (friction, fluid viscosity, etc.) decrease the amplitude of the oscillation 

with time because the mechanical energy of the system is gradually converted into thermal 

energy.  

8. To maintain constant amplitude if damping forces are present, it is necessary to replenish 

the mechanical energy of the system. The resulting oscillations are known as driven 

harmonic motion. 
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9. If the frequency of the driving force matches the natural frequency of oscillation of the 

system, the system is in resonance. In resonance, the amplitude of the oscillations reaches 

a maximum and the phase shift between the oscillating driving force and the oscillating 

motion of the system is π/2 (= 90
o
). 

 

Suggested texts to consult 

J. J. Braun: Study Guide: Physics for Scientists and Engineers, 

HarperCollinsCollegePublishers, New York 1995 or any other college physics texts. 

P. Maróti, I. Berkes and F. Tölgyesi: Biophysics Problems. A textbook with answers, 

Akadémiai Kiadó, Budapest 1998. 

S. Damjanovich, J. Fidy and J. Szöllősi (eds.): Medical Biophysics, Medicina, Budapest, 2009. 

 

Problems for home works and/or seminars. 

1) A basketball player of mass 100 kg lifts his center of mass by 1 m on jumping up. On 

landing, he needs 10 cm (elastic landing) or 1 cm (inelastic damping) path to damp 

completely his speed. Estimate the forces of damping (evoked in the vertebral column) on 

landing!  

2) The mechanical role of the tiny bones in the human middle ear is approximated by the 

following model: a point mass of m = 2 mg is anchored to the ear drum and to the oval 

window by two springs of directional forces k1 = 72 N/m and k2 = 7.2 N/m, respectively. 

How much is the (self) frequency of this system?  

3) The mass of an unloaded car is 800 kg. The body of the car will sink 6 cm after getting in 5 

persons of total mass of 500 kg. How much is the time of period of vibration of the 

unloaded car and loaded with passengers? 

4) A log floating on the surface of the water is pressed slightly down and left alone. 

Determine the frequency of the swinging log!   

5) The walking can be considered as movement of the unloaded leg as physical pendulum 

from the back ahead in a passive way (without intervenience of the muskels of this leg). 

Estimate the speed of walking if the length of one foot step is s = 0.8 m and the unloaded 

leg of length l = 1 m is swinging around the hip as pivot axis!  

6) Demonstrate the basic laws of superposition of vibrations using computer graphics 

methods! Construct simple Lissajous-curves! 

7) The Fourier-decomposition of triangle-shaped vibration of unit amplitude is 
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By plotting the (sum of the) components, demonstrate that a few components give 

acceptable approximation.   

8) Give the equation of motion of a point mass attached to a spring and a damper coupled in 

series (Maxwell body)! 

9) A mosquito is hitting with his leg the Szeged downtown bridge with a frequency identical 

with the self frequency of the bridge. In contradiction to the expectations of the 

catastrophe of resonance, the bridge will not collapse. Why not?  

10) The springs of the wagons absorb periodic shocks at the connections of the rails and 

vibrations will be evoked. The compression of the springs is 1.6 μm upon 1 N load, the 

mass of the wagon is 22 tons and the length of the rails is 18 m. At what speed is the 

amplitude of the vibration the largest?   

 


