
Why are we looking at polymer theory? 
 

1) There are some polymers in biology where this is 
important.  

2) The theoretical ideas and terminology in polymer 
theory are important.  

3) We want to avoid falling into habit of forgetting the 
flexible nature of proteins (this was actually a 
common “mistake” before). The idea of “lock and 
key”, as important as it is, leads to the interpretation 
that the macromolecular structures are as solid as 
rocks. 

4) The idea of a polymer is very important – theoretically 
and practically - for biotechnology and 
bioengineering. 

5) Protein folding <-> unfolding proceeds through 
“loose” states – this is sometimes referred to as the 
“molten globule”. We can learn some important things 
about these states by looking at the behavior of dense, 
globular, polymers. 

6) To understand protein structures better, it is good to 
know the additional effects that can happen when 
proteins “fold” into their specific structures. We get an 
appreciation for the forces necessary to counteract the 
entropic tendencies of a polymer chain. 

7) The idea of “entropic forces” is important, and is easy 
to understand with polymers. 
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Some polymer statistics 
 
Freely jointed chain 
 
The end-to-end distance is: 
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If there is no correlation between the orientation of segments i and j (i and j different), 
and li = l for all i, then 

22 NlL =   ;   or, if the chain segments are a little different,   
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The distribution function of the end-to-end distance, L, for a freely jointed chain with N 
segments of length l can be shown to be Gaussian: 
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This gives: 
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You can easily show that the mean square radius (average of the square distance from 
the center of mass) of the chain is given by 
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1 LNlR ==   ;  we will not derive this, but note that it is  

easier to calculate <L2> and easier to measure <R2>. 
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Chain with bond angles held constant 
 
If we have a chain that is not freely jointed, but the direction of every chain segment is on 
a cone at an angle of θ to the previous segment then: 
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can show that <cosθij>=(cosθ)|i-j|, so that  
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usually N(1-cosθ) >> 1, so that for this chain with bond angles held constant, and 
segment lengths identical, with lengths l 
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= ; compare to the equation for the fully freely 

jointed chain above. The mean square of the end-to-end distance <L2> is still 
proportional to N, but the “effective” bond length is increased by [(1+cosθ)/1-cosθ)]1/2. 
 
If not only the bond angles are constant, but the internal rotation about the bonds ,φ, is 
hindered, where the angle of rotation about the bond is measured from φ=0 at the trans 
position, it can be shown that: 
 

φ
φ

θ
θ

cos1
cos1

cos1
cos122

−
+

⋅
−
+

= NlL  

 
Note that all the equations above for the mean square end-to-end distance can be written 
simply as 
 

σ22 NlL = , where the σ is a factor that depends on the underlying model, or 

molecular details. 
 
This suggests that we can replace the real chain by a fictitious chain with fewer chain 
segments, Ne, and longer effective bond lengths, le, and these new effective segments 
are statistically independent, and the effective chain behaves like a freely jointed chain 
with the characteristics Ne, and le. This simplifies all the calculations if we can do this. 
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“Kuhn” statistical segment length of a polymer 
 
Define le such that we have 

22 2
e eL Nl lσ= = N  

 
The contour length Λ is the same for all representations, eelNNl ==Λ  
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el  is called the statistical segment length (Kuhn length), and l  is clearly equal to the 
mean square end-to-end length of the bonds in a statistical segment, 

e
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σLle =    .  This is an important length quantity to remember for polymers. 

 
The real molecule is treated as a freely jointed chain of Ne=Λ/le Kuhn segments 
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Wormlike polymer chains 
 
This analysis is a little more involved than the above models, so we will not go through 
the details. But there are a few important relationships. DNA is behaves as this model. 
 
1) Persistence length, lp. The statistical segment length, le, is related to the persistence 
length by, le=2 lp. 
 
2) The directional correlation of two segments of a macromolecule diminishes 
exponentially with the length of the chain length separating the two segments. 
 

Look at the above equation: if ( ) 0cos ≠∝⋅ ijji ll θ , then 
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This means that the segments of the chain are correlated, and this correlation can be 
expressed qualitatively as the mean cosine of the angle between segments of the polymer. 
 

Call  ( )sθcos  the mean cosine of the angle between two segments of the polymer 
separated by a distance along the polymer of  “s”. Then this function has the property 
called multiplicativity  
 

( ) ( ) ( )'coscos'cos ssss θθθ =+  
and this is an exponential relationship. So,  
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unity because cos(0)= 1, and lp is a constant for the polymer.  This equation defines lp, 
and  is the definition (one of them) for the persistence length of the polymer. So, when 
you have traveled a length of s=lp along the polymer, the average cosine of the angle 
between the segments separated by the distance s=lp is e-1. This relation is exact if the 
polymer has isotropic rotational symmetry around its axis. Otherwise the relationship is 
not exact, but if the chain is long enough the notion can still be applied to the polymer. 
 
3) In the literature the persistence length can roughly be considered as a maximum chain 
section that remains straight; at greater lengths, bending fluctuations destroy the memory 
of the chain direction. This is not really correct (see 5, below), but is a useful conception. 
 
4) Double helical DNA has lp, DNA = 50 nm (i.e. approximately 150 base pairs). A 
synthetic polymer of polystyrene has a persistence length of about =1.0-1.4 nm, which 
corresponds to about 4-5 longitudinal chain bonds. lp is somewhat sequence dependent. 

 5



 
5) How can we correlate the bending modulus of the polymer chain with lp? Consider that 
the valence angle, γ, between two neighboring segments (separated by l – the real 
segment length) is fixed, but rotation of the next segment about the axis defined by the 
previous segment is free (isotropic bends). Using the above multiplicativity property 
above, we have 
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can graph to find l

cos pl lθ = −
p; of course the smaller the valence angle, the longer lp. 

 
Now we can derive a relationship between the modulus of “bending elasticity” and the 
persistence length as follows. For a very short length of polymer 
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so that ( )2 2 / ps s lθ ≅ . So we can relate the average angular variation over a short 

distance s to the persistence length. The bending fluctuations of an elastic rod (isotropic) 
produce a bending energy proportional to the square of deformation. 
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the curvature, and α is the effective modulus of bending elasticity for a unit length of 
the molecule. So the mean square of the bending angle is: 
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The factor of 2 is because the bending takes place in two planes independently. 

Comparing this to the above equation for ( )s2θ , we have: 
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A very general equation for the end-to-end distance of a polymer chain is: 
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beginning of the lecture), u(s) is a unit vector at the position “s”. 
 
We can calculate the mean square: 
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where t=s’-s. 
 

Using the definition of the persistence length: ( )cos exp
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This is a general equation, and the two interesting limiting cases are: 
 
 

1) 
2 2 , for pR L L l   Hardly bending, and very stiff for the length. 

 
and 
 

2) 
2

2 =L , for ,p eR Ll l L lp el   This is for the long polymer, where the 

statistical theories hold. This is a very important relationship. 
 
Note for the long polymer, this derivation also shows that the persistence length is ½ the 
Kuhn length: remember the contour length discussion above, eelNNl ==Λ  
 
Relation between the Kuhn length and the persistence length: 
 
That is: l . The factor of two, signifies that the segment orientation spreads in 
two opposing direction on the chain. 

2e = pl
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