Lipid Self-assembly

Self-assembly occurs due to the thermodynamics, if the phospholipids are in water (or
other polar solution) the tails will want to be ‘away' from the solution. They could all go
to the top (like oil on water), or they could have the tails point toward each other. With
the tails pointing toward each other, this could result in 2 different forms.

First would be a micelle which would like a ball with the phospholipid heads on the
outside and the tails pointing together like this or in the form of a lipid bilayer:
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Micelles
Are made of single chain amphiphiles

Are aggregates with polar head groups exposed to the surface in contact with water and
the hydrocarbon portion clumped together.

Micelle interior

Similar to pure hydrocarbon solution
Comparison of free energy of transfer

Water to micelle interior Vx%?gg:ggr:d

AG ||[AH|| AS | AG | AH AS

Ethane -3.45|+2.0 18.3 | -3.9 | +2.5 21
Propane -4.23|1+1.0017.5| -4.9 | +1.7 22
Butane -5.13(+0.0] 17.2 || -5.9 | +0.8 23




These data indicate that the micelle interior is similar to hydrocarbon
The size and the shape of a micelle depends on the ratio of the surface area

As

to the number of head groups
Nh

This is due to the importance of repulsive component. As the size of the micelle increases
the ratio As/N;, decreases.

If | is the radius of a micelle, we can assume
[=aN.=a'N,
for single chain amphiphiles,

N is the number of hydrocarbon atoms per chain.

As=4nI*=4na®(Nc)? (sphere)



V =4/3n*=4/3ra3(N.)*
As/Np=3b/a
For a cylinder
As/Np = 2b/a
For a large planar bilayer
As/Np=b/a

The larger the number of molecules per micelle, the more planar the structure of the micelle
will be.

Reverse Micelles

In some organic solvents, amphiphiles form a micelle in which the charged groups are in
the interior.

Driving force? Some water in the micelle interior



Micelles and Microemulsions




Amphiphilic molecules spontaneously self-assemble in solution to form a variety of
aggregates. In our research we focus on two main topics: (i) the use of surfactant
solutions as interesting and versatile model systems in polymer and colloid
physics (micelles as equilibrium polymers and polyelectrolytes); and (ii) on the
various non-equilibrium or metastable states and the pathway and kinetics
associated with structural transitions and phase separation.

Bilayers

Structural and dynamical features of bilayers
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(from x-ray diffraction)
The minimum in electron density is due to CH3 groups. They have the lowest density.

The hydrocarbon chains are not interdigitated. They are oriented perpendicular to the layer
plane. (Effect of cholesterol)



Penetration of water (from EPR studies): Plot of polarity index Water molecules
penetrate a lot inside the bilayer

Membrane median

-3 nm 0 +3nm
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Molecular Dynamics Simulation
of Phosphatidyl Choline Bilayer

Carbon/Palmitic Oleic
Nitrogen Phosphorus

H Heller, M Schaefer, K Schulten,
J Phys Chem 97:8343, 1993.
RasMol Image by E Martz
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Figure 2. (A) The Structure of a Fluid DOPC Bilayer and (B) Its Polarity Profile (go to
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Figure 3. An Amphipathic Alpha-Helix in the Fluid DOPC Bilayer (go to Fig. 1 or Fig.
2)
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Flip-flop transitions and lateral diffusion

F-F are very rare
lateral diffusion is relatively fast (EPR) 1.8um?/s

Bilayers undergo a thermal transition between a low temperature gel-like ordered state and
a high temperature liquid-crystalline state
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Biological membranes

The fluid mosaic model
(Singer)
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Protein-lipid interactions

Lipids Proteins
Hydrophobic Non-polar aminoacid
tail Side chains

Polar heads Polar aminoacids

Protein -lipid interface
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Arrangement of Membrane proteins

Distrib=tion on the membrane serface
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Gramicidin channel



Aquaporin Channel
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