
Helix-coil transition (continued) 
 
 
So, now let’s go back to the start, and ask how to set up the problem when there are 
interactions between the units of the polymer. We will limit ourselves to nearest neighbor 
interactions, and this will give us the one dimensional Ising model. Much of the methodology 
will remain the same as above with no interactions, and it is interesting to see the differences.   
  
We make the following definitions for the models shown below: A helical unit that is 
neighboring a helical unit to its immediate right has a statistical weight of “s”, and a helical unit 
that is neighboring a coil state on its right has a statistical weight of sσ (where σ  often has a 
value of 10

-3
-10

-4
; this means that a helical state bordering a coil state to its right is much less 

likely than a helix state that borders a “helix” unit to its right).  
 
The coil state of a unit has a statistical weight of “1”  - that is, the coil state defined the zero 
of free energy.   
  
The partition function for a “N” dimensional polymer is:  
  

  



  
Note we are writing the Nth power of the matrix; as before we are using e=(1 1), because this 
row vector will pick up all the terms in the matrix into a sum. The right vector we can find as 
follows. The last matrix on the right belongs to the Nth element of the chain. This unit in the 
chain is special, because there is no polymer element to its right. So, we will assume that the 
element will act as though it always has a “coil” state to its right. This is not necessary, but 
probably close to the real case, and it makes the examples easy to write down. This means 
there are only two states we have to worry about for this rightmost unit, and these statistical  
weights are:  phc and  pcc. Note the following multiplication:  
 
 

 .  
 
 
This gives a column vector where the possible states are the elements of the vector we want 
for the rightmost unit. So, we will define 
 

 .   



 
Look at the case (for an example) where the chains can only open up from the right end; that 
is, we will not allow a coil state to be followed (on the right) by a helix state – the polymer is 
constrained to “open up” – from a helix to a coil state - from the right end).  We can write down 
the whole partition function:  
  

   
  
We want to use the following diagonalization procedures:  
  

   
The eigenvalues of the matrix 
 

   
 
are 



 

  :  
  
To get the diaganolized matrix and its inverse (T and T

-1
) we need the eigenvectors .  

 

 
 
 
  

  ; 
 
 they are, in normalized form, as follows: 
 
  



    
 and   

  
 
, where 
 

    
  
  
check if they are really eigenvectors, and to which eigenvalues they belong: 
   

     
 
and  



 

    
  
So, now all you have to do, is find the diaganolizing matrix, and its inverse, and use the 
equation:  
  

   
Lets work it out longhand for N=3 (three units) without the eigenvectors:  
  

   
  



   
  
Now lets solve the general matrix equation for N sites; we need the T,T-1 matrices:  
  

 
 

and  

   
  
You should check if TT

-1
=1. Now we can form the whole partition function:  

  

   



  

   
  
This is the general expression for our partition function in a compact notation. Compare 
to the above simple derivation of just three sites.  



 
Let’s look at the formal calculations using this expression for the partition function:  
First, we calculate the experimental parameter that is usually measured, and this is the 
average fraction of units in the helix state, 
 

 .  

   
 
 
This starts to look messy, and we do not want to get bogged down in numerical calculations 
and approximations. Let’s leave the general case, and the matrix calculations, and look at an 
example of a very short chain, to see the influence of the cooperativity.  
  
Take a 4mer:  
Configuration Statistical Weight (S.W.) S.W. when σ=10-4 and s=10  
hhhh  σs

4
    1  

hhhc  σs
3
    10

-1
  

hhcc  σs
2
    10

-2
  



hccc  σs    10
-3

  
cccc  1    1  
                                                                                            
     ZN=2.111  
  
So we see that the only two states that are contributing are the hhhh and the cccc states even 
when about half the units are in the helix state. Note that s=10 where for almost half 
occupancy! – it is far from the s=1 value where there is ½ occupancy for the individual unit 
(no cooperativity) case. This is partially due to the short chain, in addition to the cooperativity. 
As the chains get longer, the steepness of the transition increases, and the ½ point of the 
transition approaches s=1 (when N is very large). Actually, for our zipper model with N=4, 
∆Ghc/RT=ln(s)=ln(10)=2.3, rather than zero, as it is for the independent unit case when θ=1/2.  
 
Let’s calculate the exact occupancy. First because this model is so easy, we can write the 
partition function by inspection, actually (sorry about all the matrix calculations).  
 

 . 
The fraction units in the helix state is (show this): 
 



; 
and 

 

  .  
 
If we just calculate this for the sum where N=4 and using the above parameters for s and σ, 
we get θ=0.511. You should compare this value to the case of independent sites! For the 
independent sites, only 4.5% would be in the hhhh and cccc state together when θ≈0.5 – all 
the rest would be in the intermediate states, because there are so many ways to arrange 
these intermediate states on the polymer chain.  
 
So we see why one makes the “two-state” approximation. In this approximation we have  

 
and 
 

 



 
 
this is just like a series reaction A<->I1<-> I2<-> I3...<->B, where the intermediates are at such 
low concentration, that one can make the approximation that the reaction proceeds in only 
one step, with an overall equilibrium constant equal to the multiplication of all the individual 
ones: the reaction is then: A<->B, with  
 

 , 
 
 and K1=sσ, and all others are equal to s.  
 
Then  
 

 .  
 
This is usually a very good approximation for small chain lengths.  
  
Here are some examples of this type of “zipper” transition for different lengths and for 
different cooperativities.  



 
  
First , here are examples of θ for N=4,6,8,and 10, where we have used the values σ=10

-4
, 

and we are using the two-state approximation. This is a good approximation for short enough 
chains (N small), and for small enough σ (great enough cooperativity) – this is the case for 
these values for which the curves are calculated.  
  

 
 
 
 



Note how the transition gets sharper as N increases, and the θ =1/2 point decreases, and for 
N=10, is about at s=2. Because this is never a good approximation for very long chains, we 
will never approach the limit of θ=1/2 at s=1, with this approximation. But note the difference 
to the individual polymer-unit approximation; there, 

  , 
and the θ=1/2 point is always at σ=1, and it can get as sharp as we want.  
 
Now look at the “infinite-chain” limit, using different values for the cooperativity (i.e. 
different σ values). This is shown for a little different model, where we allow neighboring units 
in states “ch” as well as in “hc” (the above example was for just the “hc” case. We state this 
without any proof – you can calculate this yourself; it is easy. The result is:  
  

   
  
  



 
 
 
Another interesting parameter is the average length> of an unbroken helix segment, <Nh>:  
 

 ;   
 
 
when θ=1/2  , then  This is the “cooperative length”, and shows the  
 



limit  of cooperativity in the one-dimensional chain, and in the case at hand, where σ=10
-4

, 
this is about 100 units. So, there are long sequences of alternating “h” and “c” regions for the 
case of high cooperativity. For very long chains, this varies with the value of σ. For an 
uncooperative transition (σ=1) the average sequence length of “h” states at θ=1/2 is 2 (this is 
quite a difference). So we see that the presence of such cooperativity, which arises from the 
polymer nature of the units, will make a very large difference in the nature of the type of small 
“polymer machines” that nature can make.   
  
This is actually the basic reason why such complex entities can be made in biological 
systems, and sets the stage for the extremely wide variety (essentially infinite) of 
conformations (and of very specific conformations) of proteins, and nucleic acids, which are 
needed for a functioning biological system. And this arises simply from nearest neighbor 
interactions. 
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