
Simple models and ideas in helix-coil transitions of DNA 
  
What are the experimental observations? Take DNA as an example (actually peptides are 
somewhat simpler and easier to deal with, as we will see.  
 
We can predict the melting temperature, Tm, of natural long DNA by the following table, 
which has been assembled from experimental data  
Not only the base pairing is important, but the other secondary and tertiary structures are also 
crucial for predicting which structures of polynucleotides are present in solution at any 
particular temperature, ionic strength, pH, and presence of small molecular species and 
other macromolecules. It has become very apparent in the last few years, that the structure of 
RNA molecular species in solution controls to a great extent their functional potentials. Here 
are some of these “additional” structures, and their contributions to the overall free energy of 
a molecule.  
  
  
 
 



 



   

 
  



 



 



 

 
 
 
This is a table of the approximate free energy contributions of internal loops, bulges and 
hairpins. Notice they are all positive – that is they tend to destabilize the structures if the 
complementary base pairs are not present. But the sequences are often such that the only 
way the molecule can fold (or at least one of the more favorable ways) is to form such 
structures. Much less is known about the characteristics of these structures than for the base 
pairing possibilities and energetics.   
  
  





 
The following experiments were made my Maxim Frank-Kamenetskii’s research group in 
Moskow, and can be seen in his book “Unraveling DNA”. All the DNA molecules in a solution 
have the same sequence. If you melt a solution of one type of DNA molecule (but many 
molecules) very slowly (these experiments can take weeks) the following data can be 
acquired, where the heat absorbed at any temperature (this experiment is done in a 
calorimeter) is plotted versus the temperature.  
 
 
 
We see that there are regions where there are large amounts of heat absorbed, and regions 
where little, or no, heat is absorbed. What are these peaks due to? Remember the 
thermodynamic values given earlier in the lecture. The enthalpy and entropy of the different 
base pair permutations are very different. So the explanation seems to be that the regions 
corresponding to different “mean sequences” melt at different temperatures. If the 
temperature were raised rapidly, in comparison to the kinetics of the “melting reaction”, we 
would see a broad curve, but each of the peaks has a width of about 0.5 C, and this is to be 
expected from the theory, which we will develop.   



 
  
   
How can we see this phenomenon on the molecular scale – even with just single molecules, 
so we can be sure what is happening?  
  





 
The “melting” of a DNA molecule can be visualized on a molecular scale by electron 
microscopy. A solution with DNA molecules (all the same) were heated up to a particular 
temperature. The strands of the molecule in the regions of the DNA molecules which were 
melted at any particular temperature have their nitrogenous bases in contact with the solvent. 
A chemical that reacts with the exposed bases was added to the solution. The buried bases 
(base paired) were not affected. Then the solution was cooled, the solvent was exchanged, 
and electron micrographs of the DNA molecules were made. 
  
The statistics of many molecules was made, and because the position along the DNA 
molecules could be determined in the pictures, the following three dimensional 
representation of the data could be made.  



 
 
This experiment brings up some very important considerations regarding the stability of 
different regions of DNA.   



  
1) The broader width of the melting (disorder) transition is not really due to the fact that the 
DNA melting reaction is happening in one dimension, where we know that no first order 
phase transition can happen, but it is happening because of the heterogeneity of the 
sequence in natural DNA.   
  
2) It is interesting that there are organisms that live at temperatures above many of the 
temperatures where the sequences melt, so they must have a way to control this.  
  
3) In general, for the correct functioning of a cell, the temperature does not vary, and it is far 
below the temperatures where these sequences are melting (usually at 37 C).  
 
So what is the role of this large sequence variance in the stability of different regions 
of the DNA in a chromosome?  
 
During transcription, RNA polymerase binds to very special sequences on the chromosome, 
and these are AT-rich sequences. To function, the RNA molecule has to separate the strands 
and “read” the sequence information, and this will take place most easily at sequences that 
are easily melted. Therefore the promoters region have high AT content, and the proteins act 
as local “heaters”. How they can do this we will discuss later, but it is a fact that these proteins 
(many more than just the polymerases) essentially bind to sequences that are easily melted 
(or sometimes the reverse). So this phenomenon is an important control mechanism in the 
life of a cell. Even during the elongation phase of transcription the melting propensity of the 



DNA (and the newly synthesized RNA molecules) is used as a control mechanism to control 
when, and how fast certain sequences on the chromosome are synthesized.  
  
4) Note that the melting of such long heterogeneous DNA does not always melt from the 
ends; internal loops are first made depending on the sequence.  
 
5) The melting of DNA is very important for biotechnology, as we will now show.  
  
  
We are going to investigate the thermodynamic description of linear chain polymers with 
monomer units that can exist in different states. Most of the important polymers in biology 
(biopolymers) are one dimensional polymers, where the monomers are connected to each 
other in an ordered linear array (for instance all the polymers which we have considered up to 
now, such as the proteins and nucleic acid polymers).  
 
By “thermodynamic description” we mean we want to know the details of the “conformation” 
of the biopolymer at a given temperature, pressure, ionic strength, pH and molecular 
environment. Obviously it is important to predict the polymer conformation because all of the 
biopolymers in general carry out some biological function, and the ability, or the capacity, with 
which the molecule can operate, depends on the “state” that the bio-macromolecule finds 
itself in.   
  
Biological molecules are special adaptable machines with many micro-states. We have seen 



this when we discussed the conformational space of proteins. If the molecule were a normal 
“machine” that has to have all “parts” working in a certain way, or that has to be assembled in 
a definite particular way, then we would know how the macromolecule works just by knowing 
if all the small parts are in order.  
 
Think of a car motor. In general all parts of a finely tuned motor have to be assembled in a 
certain way with very rigorous requirements.  An efficient machine that is realized by good 
“man-made” engineering design has very strict performance characteristics of the different 
parts. If any of the crucial parts does not work exactly right, we know the machine could not 
be used, and that it has to be sent back to the shop for repairs. But biological systems are 
quite different.  
 
Good man-made machines (or electronic circuits) don’t have “slop”.  
 
But molecules have to deal with a very complex ever-changing situation. They have to 
operate in a very sloppy environment. In a way biological molecular machines have 
developed in such a way that they are flexible, and in a way sloppy, and this is an inherent 
part of their design. Well - we don’t want to exaggerate.  
  
Molecules, even large ones, cannot escape from a very hectic environment.  They are 
designed to operate in rather wildly frenzied surroundings, where the molecules are battered 
with objects of their same size, and are “pushed” over distances comparable to their size. 
This has major consequences when we consider how these molecules function, or even 



exist.  
  
Biological systems do work very precisely in many respects; however, the parts are not 
always to be found in only one state. There are many different states that the smaller parts of 
a macromolecule can be in, and still the overall biological system - this can be a single 
macromolecule, a supramolecular assemblage of molecules, or a whole organism - works 
well.  
 
The details of the conformational distribution within the statistical mechanical “state-space” in 
which a macromolecule finds itself can be quite complex. The allowed conformations, most 
importantly the most prevalent conformations, depend upon the details of the possible 
intermolecular and intramolecular interactions, as well as the random conformations that are 
possible if there are no such interactions (e.g. as we have discussed when covering the 
theory of polymer physics).  
  
Perhaps we are not interested in the intricacies of how the functional parts of a 
macromolecular system works, and how the complex interactions between the molecular 
components lead to some functional biological usage.  
 
In this case a purely phenomenological point of view of the system (as is sometimes the case, 
even for some biophysical studies, and more often for a higher level description of some 
biological process) will suffice. In such a case we can just ask how the system acts under 
whatever circumstances exist normally, and we can just describe the actions and behavior of 



the system from a purely descriptive point of view (sort of a “black box” level, as far as the 
molecular characteristics are concerned, and many times using models that correspond to 
the realm of large objects and classical mechanics).   
  
But if we want to ask how the system works on a molecular level, the level of difficulties rises 
tremendously. One of the reasons for this, besides the large-scale complexities that can, and 
do, arise, is that the biomolecules are made of many small parts, and these parts can 
individually exist in many states, and the parts can interact with each other on a very small 
scale.  
 
The number of multiple states for any biopolymer, as we have pointed out earlier, are 
unbelievably large (numbers like (20)

100
 or so different arrangements, and each “part” can 

exist in 3-10 different states, not counting the proximal and distal intermolecular interactions 
along a folded chain).  
 
We need a way to investigate this molecular level of action, without getting lost in all the 
complexities, which would lead us nowhere. The molecules seem to have found a way 
(through evolution) to avoid getting lost in their conformational and functional space. They 
can limit themselves to a relatively very tiny subset of the possible state-space, even if this 
“selected subspace” still seems large to us from an experimental (or even a computer 
theoretical) point of view. And they do this in a way so that they often retain an impressive 
flexibility. But we do have ways to observe this scale of workings, and we will discuss such 
things later.  



  
However, before we can even begin figuring out how these macromolecules can “find” their 
“working distribution” in this large conformational space, we have to know the approximate 
energies and forces that act between the parts of the macromolecules on the molecular and 
atomic scale. In general this is not an easy undertaking, because we can only “disassemble” 
the macromolecule to a certain extent without losing the whole “function” that we are trying to 
understand. We need to have ways to observe the system so that we are learning about its 
inner molecular workings in as gentle a way as possible. This can be done on several levels.  
 
 
One very elegant way (which we will discuss later) is to just watch the fluctuations of the 
molecular system; then if we are clever, we can observe the important characteristics without 
disturbing the system at all. This is sometimes possible, but as yet, it only works for certain 
systems, and for certain questions. In general we have to perturb the system in order to get 
this information.  The levels of perturbation, and the methods of observing the results of a 
perturbation, vary widely. We may discuss this when we discuss “relaxation” methods.  
  
How do we analyze how a macromolecule is built? 
  
1) The most fundamental thing we have to know first is the identity of the building blocks 
(after we have selected the biological system and gotten some significant molecular 
components – this is also a prerequisite!). This took decades of work previously, but either it 
has been done to a large extent, or the methods have been developed so that we can fairly 



rapidly get this information nowadays. It is the province of the chemist.   
  
2) Then we have to know how the building blocks are assembled in a “primary” way (that 
is the primary sequence) and this methodology has also been highly developed (and is still 
being developed) so that we can fairly rapidly get this information today. Previously this also 
took years. This is sequence analysis of proteins and nucleic acids (DNA/RNA) – for instance, 
the human genome project.  
  
3) Next we want to know how the different parts of the sequence fit together to form a tertiary 
structure, and this is where things get interesting for the discussion now. The techniques of 
X-ray analysis and NMR especially have been improved and developed so much in the last 
years, that we have a good idea of the “average” 3-D structure of many macromolecules. 
There is a lot of room for improvement and there are always new and exciting improvements, 
but there has been tremendous progress in this area. We have seen many examples in the 
lectures, and discussed the “rules” for assemblage and arrangement of the macromolecular 
structures.  
  
4) But now we come to the topic we want to discuss – what are the energies responsible for 
the structures that have been found, and how do these interactions explain the way the 
molecules “fold” and how they function. And how do we get this information? This information 
must come from experiments. These questions are essentially asking us to understand the 
thermodynamics of the molecules in their environment, and to understand the statistical 
mechanics on the molecular scale. The statistical mechanics is especially important because 



all the action takes place on the molecular scale, and on this scale things fluctuate wildly 
unless they are confined by tight overall constraints. The overall thermodynamics (better 
thermostatics) will not tell us anything about the distributions of conformations and 
fluctuations of the macromolecules. BUT we also need to have the thermodynamic 
experiments, descriptions and numbers.   
  
Remember that the constraints are expected to be just the level necessary in order to “hold” 
the macromolecules in particular conformations so they can function “good enough” for their 
job. The molecules function on the molecular scale individually, so that we are not just 
interested in a fancy statistical mechanical way to describe some overall macromolecular 
state that does not fluctuate on the level of interest (like a crystal of a piece of metal). The 
statistical mechanical description is necessary to describe the molecular system realistically 
at all.  
 
It may be that the distribution within the state-space of a macromolecule is limited to a narrow 
extent due to strong interactions. Maybe certain characteristics can be fairly well understood 
using models that are purely static; if so this is convenient. If this is the case, then we want to 
understand how this is accomplished; that is, how to constrain a molecularly sized system so 
strongly. However, the real system is fluctuating, some much more than others and we have 
to understand the interactions between the parts to understand these fluctuations.  
  
This is the reason for carrying out the type of experiments we will discuss under the topic of 
“helix-coil” transitions. It could be described well as “order-disorder” transitions. We will 



consider simple cases; the complex cases are then not hard to imagine, and it is not hard to 
imagine how difficult and complex they can be!   
  
The theories of helix-coil transitions are clad with many different outward appearances. 
There are numerous advocates of the different models, each purporting to have advantages 
for solving the problem of linking the statistical probabilities of a large number of molecular 
states with experimental evidence that is based on only a few macroscopic parameters.  The 
central problem in understanding the statistical mechanics, and eventually the 
thermodynamics, of any conformational space of a macromolecule, be it a protein, DNA, 
RNA or lipid, is to find a convenient representation for the partition function.  
 
Partition functions are a weighted sum over an enormous number of macromolecular 
conformations, where the weighting factor for each “state” representing any particular 
molecular conformation depends on the energy (enthalpy) and entropy corresponding to that 
state. If we know the partition function, and all the components that go into constructing it, we 
can then calculate the relative probability of finding a particular conformation, or 
sub-ensemble of states, within the conformational space of the molecule. This depends on 
the external thermodynamic conditions of the molecules, such as the temperature, pressure, 
ionic strength, pH or other solution or environmental conditions.  
 
The extent of interactions with other macromolecular components is also very important for 
the distribution in the space of all possible molecular conformations.  
 



Once we know the partition function, we can construct all the thermodynamic quantities 
possible from the system, and can calculate all the experimental observables. This is our link 
between the experiments and the description on the molecular scale. We have seen how this 
works with the polymer chains, where we calculated the macroscopic characteristics from the 
microscopic description.   
  
Experimentally we do things like perturb the macromolecular system with temperature or 
pressure changes, change the solvent (different ions or pH), or add “ligands” which are 
molecules that bind (or otherwise interact) with the macromolecules. We then see how the 
system reacts, and try to understand the energetics of how the molecule responds to the 
perturbation.  
  
A new dimension has entered the experimental field in the last years, and this is the realm of 
single-molecule experiments – we will discuss these experiments later. This gives us a direct 
way to look at the microscopic scale of things – but we still need the statistical description.  
 
We will use the same tools that we use in physics to describe statistical systems, but on a 
molecular scale; that is the molecule itself becomes the system. Remember what a “melting” 
curve looks like (where we change the temperature). Take this as an example.  
  
The partition function 
 
Assume we are dealing with a linear molecular system with N units, pi, where “i” stands for 



the position of the unit in the chain from the left end. Write the primary structure:  
  
p1-p2-p3-p4-...pN-1-pN  
  
Say that each state can exist in a certain state (“h” or “c”). So we have N

2
 possibilities for the 

“conformation of this bio-“chain”.   
  
For instance, one single conformation can be represented by:  
  
c
p1-

h
p2-

h
p3-

c
p4-...

h
pN-1-

c
pN   

  

where unit 1 is in the state “c” (
c
p1) , unit 2 in the state “h” (

h
p2), ..., unit N is in the state “c” 

(
c
pN).   

  
You can have any combination of these states (2

N
 of them – the positions of the units within 

the chain cannot permute, of course).  
  
The probability that the unit “pi” will be in a particular state with the energy εi  will be 
proportional to the Boltzmann factor, 



 

  .  
 
We are at equilibrium with constant temperature and pressure. εi  is an energy, actually the  
“free energy”, of the i

th
 unit in the particular state.  

  
The polymer chain will have a certain probability of being in each of its particular states, and 
this probability is specified by the energy that each and every unit has in each state:  
  

   
  
The partition function (ZN) is just the sum of these products over all the states possible for the 
polymer chain:  
  

 , 
 
where the sum is over all the different combinations of how the energies can be distributed 
over the different units. This is a very general formula, and just as useless as it is general.  



 
We have to specify the number of unit states possible, and their corresponding relative free 
energies.  
  
  
Now say that each state has only two possible energies, depending on whether it is in state 
“h” or “c”, – that is, εc is the energy of state “c” and εh is the energy of state “h”.   
  
The Boltzmann factor for a state that has “m” helix units, and “n” coil units (where h = helix 
and c = coil) is:  
  

    
  
and there are 
 

    
 
ways to have m helix states, and n coil states; so the total sum of those Boltzmann factors 
which have m helix, and n coil states are:  
  



   
  
and then the total sum for the partition function, over all the possible states is just:  
  

   
  
and this sum can be written as:  
  

    
Without loosing generality, we can define the free energy of the “c” state εc  to be our base 
value, and set εc to zero.  
 



This we can do because we will always use ZN to find the probability of a certain collection of 
states, and this means we will always be dividing by ZN anyway. That is, the probability of a 
certain selected sub-ensemble of states is  
  

 
 
 Then we have our partition function in a convenient representation:  
  

   
  
Note with the last notation, the partition function is expressed as:  
  

 ;  
 
we define “s” below.  
  
Remember, the εi  in the last equations, should be the “free energies” (G); 
 



 that is, 
 

  .  
 
And thus “s”, defined above, can be written as:  
  

   
 
 
This means that “s” is just the equilibrium constant of one unit being in the “h” or “c” state 
 
Remember that  we are writing        
 
 
That is: 
 

    



  
The average fraction of “h” units (where <m> is the average number of “h” units out of a 
total of “N” units) can be written easily by using our partition function, ZN as:  
  

  
 
The last two expressions are simply mathematical conveniences to calculate m when we 
have a convenient expression for ZN.   
This gives:  
  

   
  
  
But what does this mean? Say that we have an ensemble (concentration in a solution) of a 
single individual molecularly independent molecules, being in the “h” of “c” state (with 
the same equilibrium constant, s; that is, c↔ h. Then the fraction of units in the “h” state θ  
would be:  



 

  ;  
 
this is the same expression as above for the polymer. So, the fact that the units are contained 
in a polymer does not make any difference for the probability of being in  h or c state. Why? 
This is because there is no interaction between the individual units on the polymer chain. 
There is no cooperativity – no interactions between the neighboring units on a chain.  
  

Let’s look at this situation just a little more: 
  

1) Define Tm as the temperature where “s”=1, or where ½ of the molecules are in the “h” 
and “c” states; the “m” subscript stands for “melting” temperature. That is, this is the 
temperature where 

 
 

 . 
 

Remember, 

    



 
If  at T=Tm, we have  

 

. 
 
 So, 

    
And we can rewrite the above equation as:   

 ,  
where 

    
Remember ; we lose heat when we form a helix, so a is negative!. 
 

  
 
 



Use this expression to write the fraction helix state:  

   
 
If T<Tm, then the   exp becomes small, and  
 
 
if T>Tm, then the  exp becomes large, and   
 
 
The sharpness of the “transition from h->c depends on the magnitude of   
 
But, in general  
 

 
 
 so the sharpness is limited.   
 
 
However there is one good thing, 
 
  



 
 
 (that is, the helix has less entropy than the coil) , so 
 

  ; 
 
this is about right! But the curve should be much sharper. We have to introduce cooperativity 
to simulate the curve shape correctly, and to uncover the mechanistic and molecular 
information hidden in the statistics of the “melting curve”.  
  
2) Consider a reaction where we have, instead of two states, h and c, the protonation reaction 
of a COO

-
 group at every unit position of the polymer. How would you write the acid-base 

equations for this polymer with N acid dissociating units? We can assume that each 
dissociation is independent, and it is the same. Later we can also bring in cooperativity in this 
“dissociation” or “binding” problem. The binding reaction could be the binding of any ligand to 
the individual units of the polymer chain  
  
3) If each unit can be in “j” different states with statistical weights qi, we just used two states, 
h and c, in the above example, and the units are independent, we can write the partition 
function of a polymer with N units as:  
  



 ;  
 
this is a simple equation. You can always normalize by setting one of the statistical weights to 
1,as we did in the above example (because you are always dividing by ZN anyway).   
  
4) This system with independent units on the polymer acts just like a normal reaction in 
solution. The temperature curve (melting curve) is just 
 

  .  
 
When T=Tm, then s=1 and θ=1/2, as we would expect.   
  
Because 
 

, 
 
 s is always >0.   



  
5) The free energy of the whole polymer can be written as  
  

 ; 

  
 
What does this equation mean? How does this relate to an experiment to determine the heat 
of reaction of the c<->h reaction? 


