

chromists plants alveolates animals rhodophytes fungi

flagellates

basal protists

Modern cellular organisms

cyanobacteria

BACTERIA

heterotrophic bacteria

From http://www.ucmp.berkeley.edu/exhibit/phylogeny.html

Endothelial cell Lysosomes, mitochondria and nucleus

See the cellular cytoskeleton, ER and nucleus

Modern cells are complex with lots of structure and organelles

Visualization of redox potential in 3T3 cells

Haeckel

Darwin

best known for the famous statement "ontogeny recapitulates phylogeny", he also coined many words commonly used by biologists today, such as **phylum**, **phylogeny**, and **ecology**. On the other hand, Haeckel also stated that "politics is applied biology", a quote used by Nazi propagandists.

Phylogenetic trees

Woese

Y. The portion of history that the bird, jellyfish, and fern share.

The bird and jellyfish share a more recent common ancestor (A) than either does with the fern (B). Therefore, they are more closely related to each other than either is to the fern.

In the case of animals, Linnaean classifications often reflect our intuitive sense of similarity. Thus in the following classifications species 2 and 3 have more levels of classification in common than either has with species 1. This is a reflection of the greater similarity of the fly (*Drosophila melanogaster*) and the mosquito (*Aedes aegypti*), than of fly and lobster

(Homarus americanus) or mosquito and lobster.

Classifications of Three Species				
	Species			
Level	1	2	3	
Domain	Eucarya	Eucarya	Eucarya	
Kingdom	Animalia	Animalia	Animalia	
Phylum	Arthropoda	Arthropoda	Arthropoda	
Class	Crustacea	Insecta	Insecta	
Order	Decapoda	Diptera	Diptera	
Family	Caridea	Drosophilidae	Nematocera	
Genus	Homarus	Drosophila	Aedes	
Species	americanus	melanogaster	aegypti	

Universe (?) World (?) -Continent -Country -State/Province -City -Street -Number -Last Name -First Name The shared levels of classification can be accentuated by slightly reformatting the data in the table.

Classifications of Three Species				
	Species			
Level	1	2	3	
Domain	Eucarya			
Kingdom	Animalia			
Phylum	Arthropoda			
Class	Crustacea Insecta			
Order	Decapoda Diptera			
Family	Caridea	Drosophilidae	Nematocera	
Genus	Homarus	-	Aedes	
Species	americanus	melanogaster	aegypti	

RIBOSOME SUBUNITS

60-S

30-S

TWO (2) SUBUNITS

Ribosomal RNA Genes and Their Sequences

To infer relationships that span the diversity of known life, it is necessary to look at genes conserved through the billions of years of evolutionary divergence. An example of genes in this category are those that define the ribosomal RNAs (rRNAs). Most prokaryotes have three rRNAs, called the 5S, 16S and 23S rRNA.

Ribosomal RNAs in Prokaryotes				
Name ^{<i>a</i>}	Size (nucleotides) Location	on		
5S	120 Large s	subunit of ribosome		
16S	1500 Small s	subunit of ribosome		
23S	2900 Large s	subunit of ribosome		

^{*a*} The name is based on the rate that the molecule sediments (sinks) in water. Bigger molecules sediment faster than small ones.

The 5S has been extensively studied, but it is usually too small for reliable phylogenetic inference. The 16S and 23S rRNAs are sufficiently large to be quite useful.¹⁸

The extraordinary conservation of rRNA genes can be seen in these fragments of the small subunit rRNA gene sequences from organisms spanning the known diversity of life:

human	GTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGCTGCAGTTAAAAAG		
yeast	GTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAG		
corn	GTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTTAAGTTGTTGCAGTTAAAAAG		
Escherichia coli	GTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCG		
Anacystis nidulans	GTGCCAGCAGCCGCGGTAATACGGGAGAGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCG		
Thermotoga maratima	GTGCCAGCAGCCGCGGTAATACGTAGGGGGGCAAGCGTTACCCGGATTTACTGGGCGTAAAGGG		
Methanococcus vannielii GTGCCAGCAGCCGCGGTAATACCGACGGCCCGAGTGGTAGCCACTCTTATTGGGCCTAAAGCG			
Thermococcus celer	GTGGCAGCCGCCGCGGTAATACCGGCGGCCCGAGTGGTGGCCGCTATTATTGGGCCTAAAGCG		
Sulfolobus sulfotaricus	GTGTCAGCCGCCGCGGTAATACCAGCTCCGCGAGTGGTCGGGGGTGATTACTGGGCCTAAAGCG		

Francis Crick

Leslie Orgel

The RNA World

Thomas Cech

Carl Woese

Horizontal Gene Transfer

When did the cell arrive?

Archaea

Buryarcha

Crenarchae

Horizontal Gene Transfer

Transformation - the uptake of naked DNA is a common mode of horizontal gene transfer that can mediate the exchange of any part of a chromosome; this process is most common in bacteria that are naturally transformable; typically only short DNA fragments are exchanged.

Conjugation - the transfer of DNA mediated by conjugal plasmids or conjugal transposons; requires cell to cell contact but can occur between distantly related bacteria or even bacteria and eukaryotic cells; can transfer long fragments of DNA. **Transduction** - the transfer of DNA by phage requires that the donor and recipient share cell surface receptors for phage binding and thus is usually limited to closely related bacteria; the length of DNA transferred is limited by the size of the phage head

Examples of Gene Transfer by Bacterial Transformation in the Environment

Bacterial Host	Environmental situation	Genetic Marker	Reference
Pseudomonas stutzeri	Marine Water microcosm	Chromosomal rif	Stewert & Sinigalliano, 1991
Pseudomonas sp.	Marine water and sediment	Plasmid multimers	Paul et al., 1991,1992
Acinetobacter calcoceticus	Ground water and soil extract	Chromosomal trp	Lorenz et al. 1991,1992
B.coli	River and spring water	Plasmid	Bøzer et al., 1996

Examples of Gene Transfer by Bacterial Conjugation in the Environment

Donor	Recipient	Environment	Genetic Marker	Reference
B. coli	Shigella flemeri	Urinary tract?	Amp plasmid	Tauxe et al, 1989
Pseudomonas syringae	P. syringae	Pear leaves	Amp plasmid	Nijsten et al., 1995
Pseudomonas flourescens	P. flourescens	Wheat thizosphere	Chromosomal genes	Troxler et al.,1997

The RNA World http://www.panspermia.org/rnaworld.htm

The Ribosome Structure & Funftion http://ntri.tamuk.edu/cell/ribosomes.html

Endoplasmic Reticulum: Structure & Function http://www.cytochemistry.net/Cell-biology/rer1.htm

Gene Translation: RNA to Protein <u>http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Translation.html#2._Elongation</u>

Biology for Kids (not bad – a quick look at the cell) http://www.biology4kids.com/files/cell_ribos.html

National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/About/sitemap.html

Glossary for Phelogenetic Systematics <u>http://www.bechly.de/glossary.htm</u>

Evolution - Systematics and Phylogeny http://www.nearctica.com/evolve/taxonomy.htm

Classification and Phylogeny http://www.bact.wisc.edu/Bact303/Phylogeny

Bacteriology http://www.bact.wisc.edu/Bact303/Bact303mainpage

Phylogeny Programs http://evolution.genetics.washington.edu/phylip/software.html#Alignment

Phylogeny of Life http://www.ucmp.berkeley.edu/exhibit/phylogeny.html