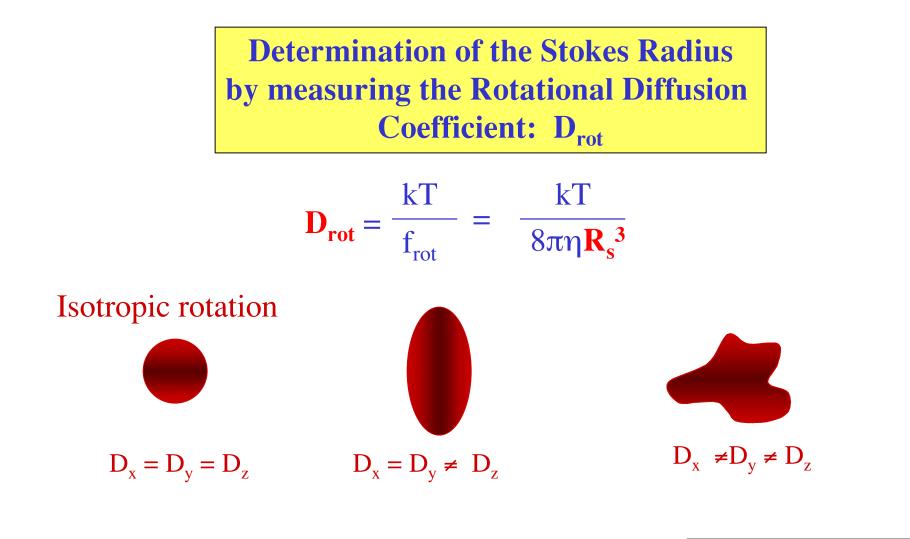
Discussion Session prior to the Second Examination:

Sunday evening April 13 6 to 8 pm

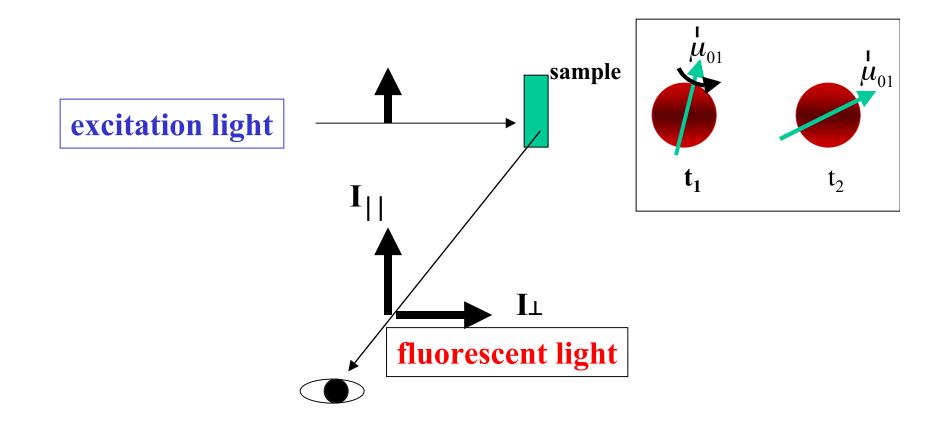
161 Noyes Laboratory



Measure D_{rot} $D_{rot} = \frac{kT}{8\pi\eta R_s^3}$ If you know $R_s \Rightarrow \eta$ microviscosityIf you know $\eta \Rightarrow R_s$ molecular size, shape

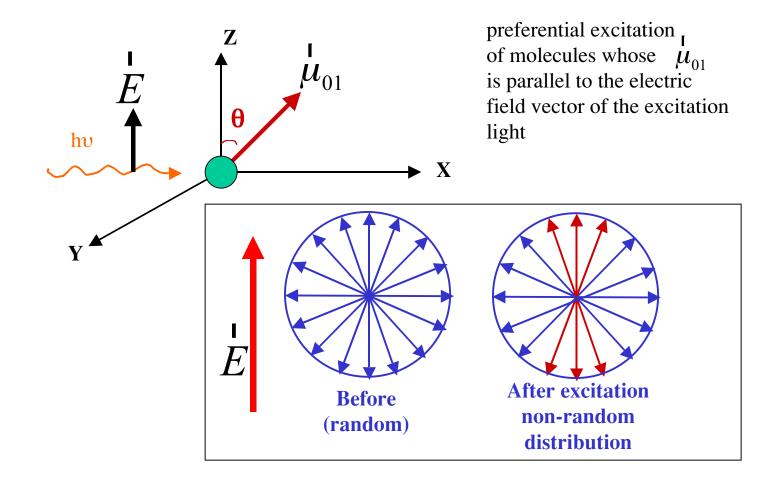
Rotational Diffusion Rate can be determined by Fluorescence Spectroscopy

Fluorescence polarization (anisotropy) can measure how rapidly a molecule is tumbling in solution



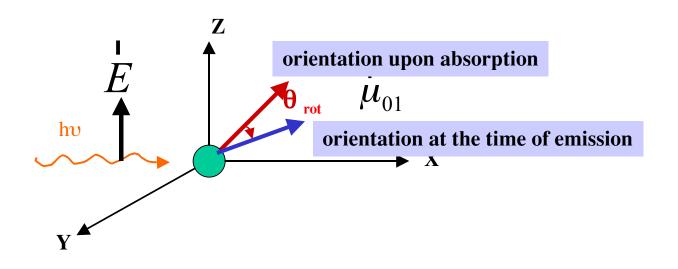
Fluorescence anisotropy

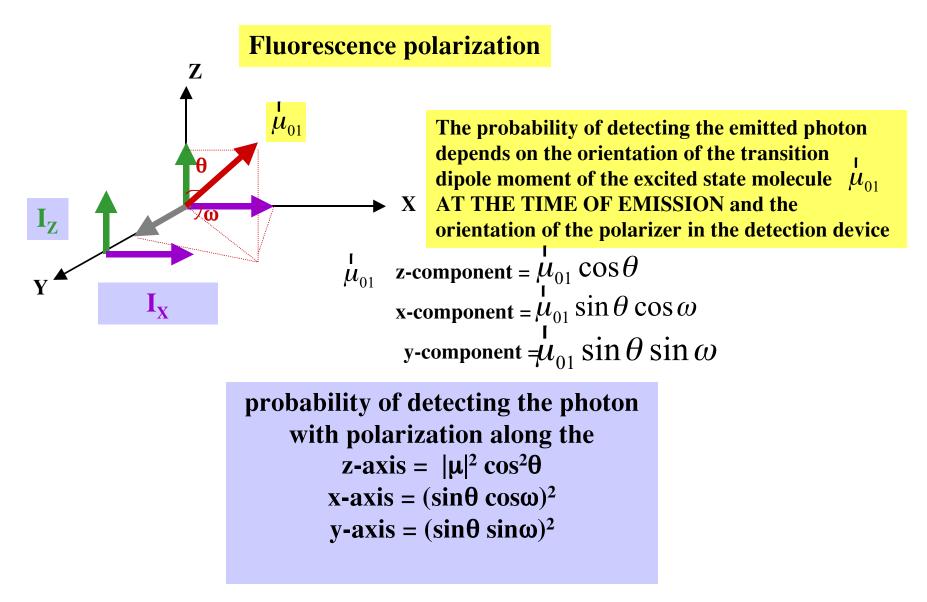
For polarized excitation light, the probability of absorption of a photon depends on $\cos^2\theta$



Fluorescence anisotropy

After formation of the excited state, the molecule can rotate during the time prior to photon emission



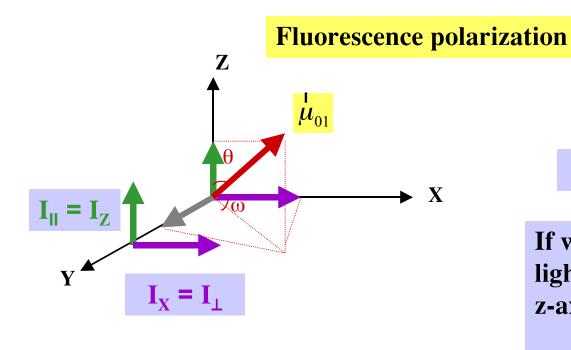


 I_z proportional to $< \cos^2\theta >$

Average over population

 I_x proportional to $< \sin^2\theta > < \cos^2\omega >$

 I_Y proportional to $< \sin^2\theta > < \sin^2\omega >$



Define
$$I_{\parallel} = I_Z$$

If we start with excitation light polarized along the z-axis, then $I_x = I_y = I_\perp$

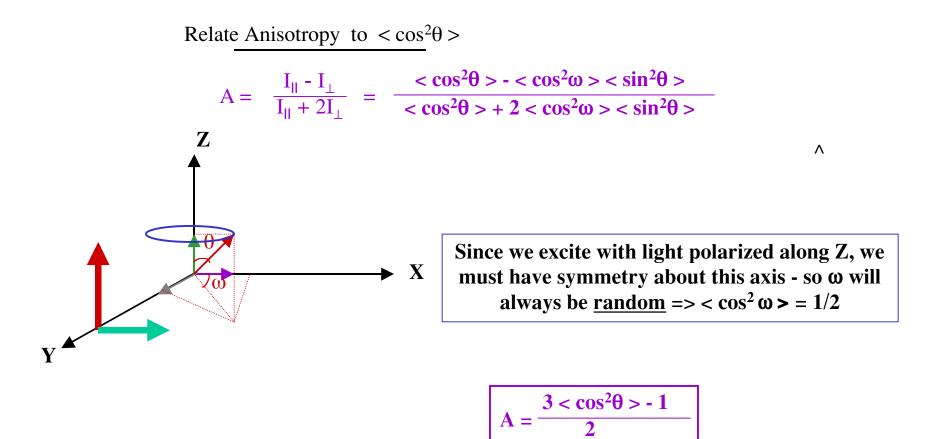
The total light intensity at the detector is $I_{tot} = I_{\parallel} + 2I_{\perp}$

Define: polarization, P =
$$\frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + I_{\perp}}$$

anisotropy,
$$A = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + 2I_{\perp}}$$

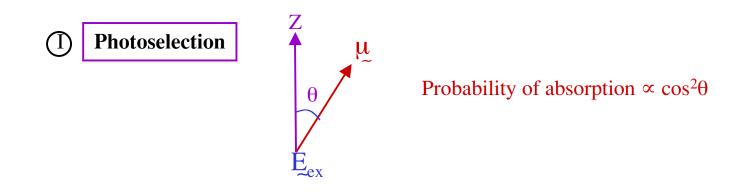
$$A = \frac{2}{3} \left[\frac{1}{P} - \frac{1}{3} \right]^{-1}$$

Polarization

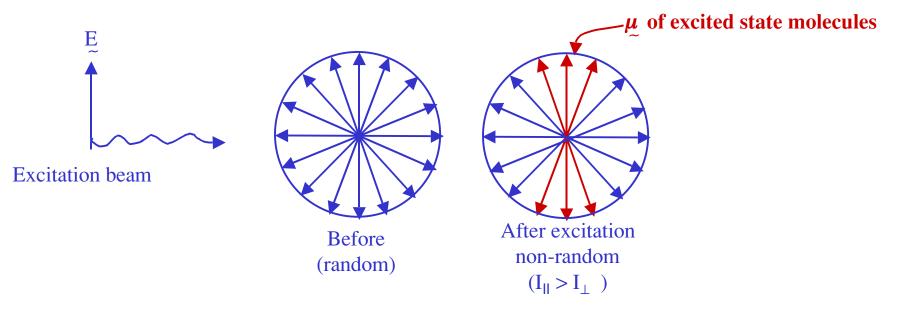


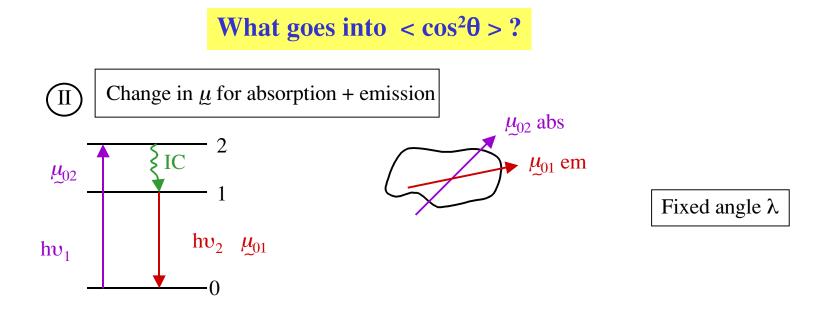
By measuring I_X and I_Z we can compute $< \cos^2\theta >$ for the emitting molecules

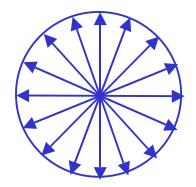
What goes into $< \cos^2\theta > ?$

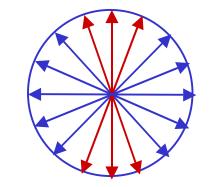


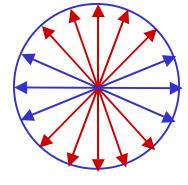
The excited state population is not randomly oriented immediately after excitation





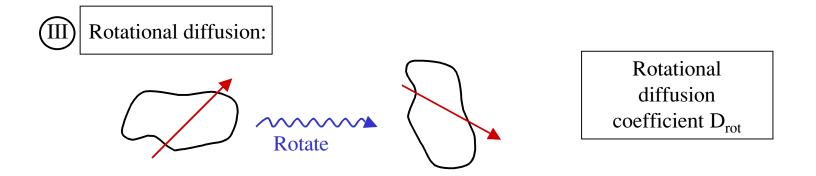


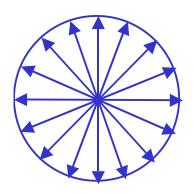


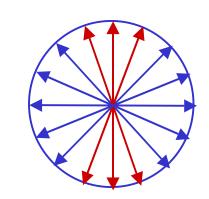


Change μ

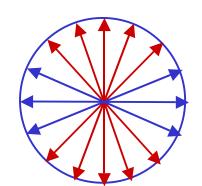
What goes into $< \cos^2\theta > ?$

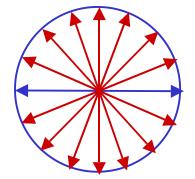






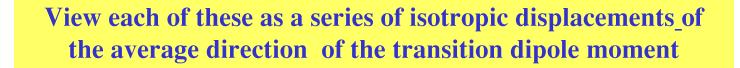
photoselection

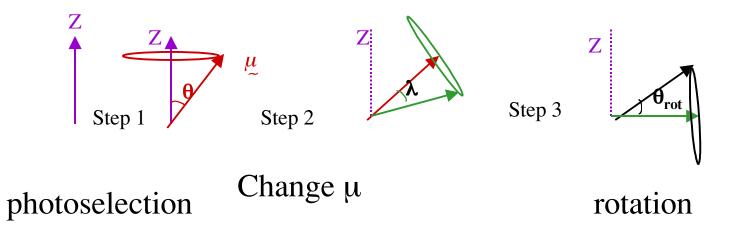




Change μ

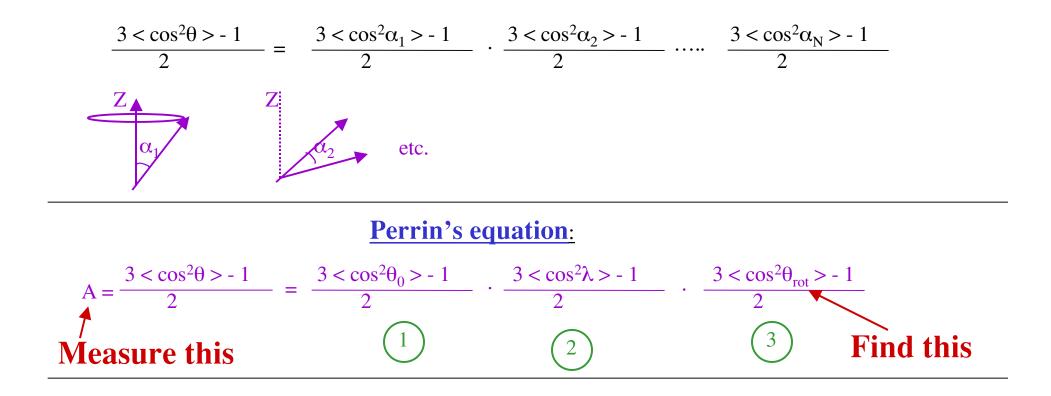
rotation





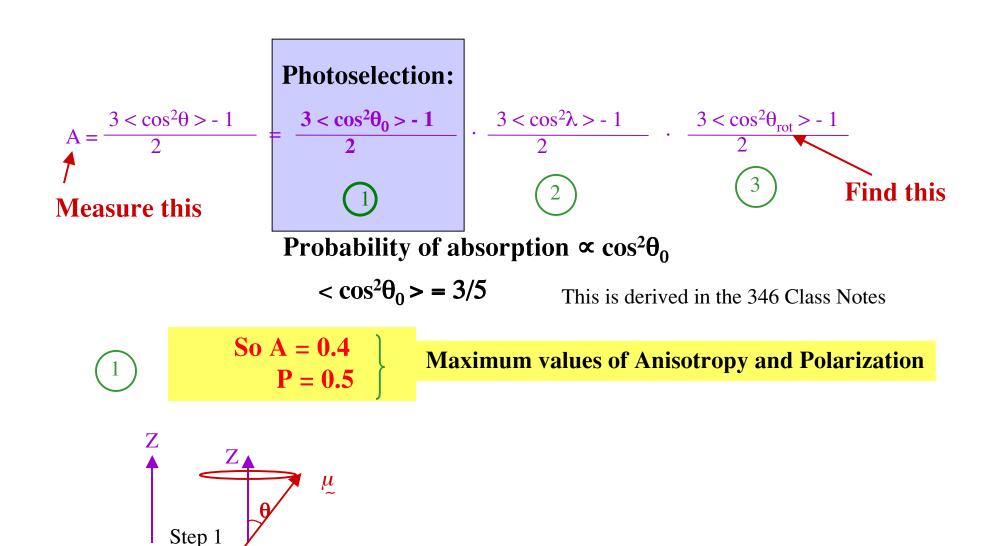
<u>Goal:</u> Find average displacement (θ) in terms of known parameters

Use Soleillet's equation - from geometry, describing a series of isotropic displacements of a vector

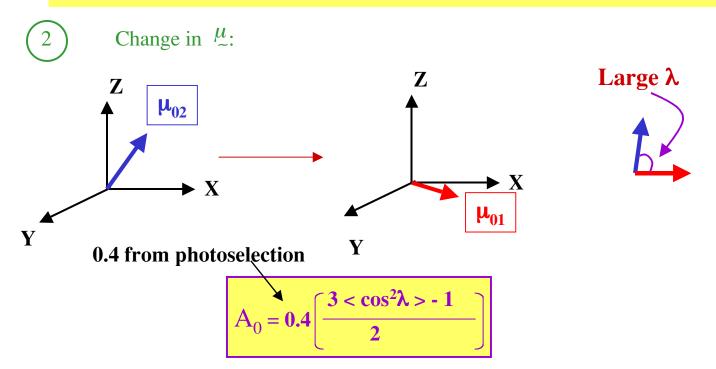


$$\langle |\theta_{rot}| \rangle \longrightarrow D_{rot} \longrightarrow Stokes radius$$

Photoselection



Emit from a different transition after internal conversion



A₀ is the anisotropy obtained in the absence of molecular rotation e.g., using frozen solutions or solutions with high viscosity Depends on excitation + emission wavelengths

> Maximum value for $\lambda = 90^{\circ}$ so limits on A_0 and P_0 are $-0.2 \le A_0 \le 0.4$ $-0.33 \le P_0 \le 0.5$

Rotational Diffusion: will always tend to bring $A \rightarrow 0$ or $P \rightarrow 0$

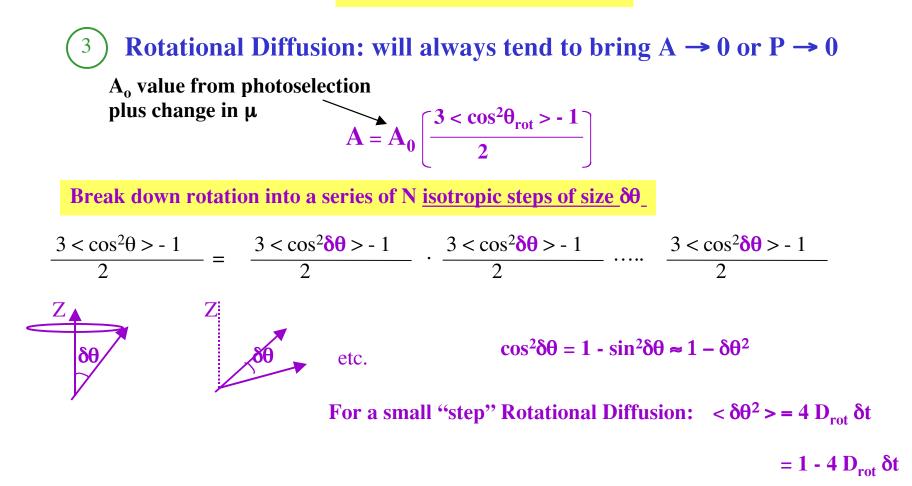
$$A = A_0 \left[\frac{3 < \cos^2 \theta_{\text{rot}} > -1}{2} \right]$$

Anisotropy of frozen sample

 $<\cos^2\theta_{rot}> = 1$ if there is **no rotation**: $A = A_0$

 $<\cos^2\theta_{rot} > =1/3$ for random orientation: A = 0

Rotational Diffusion



$$\frac{3 < \cos^2 \theta_{\text{rot}} > -1}{2} = (1 - 6 D_{\text{rot}} \delta t)^{t/\delta t}$$

Rotational Diffusion

$$\frac{3 < \cos^2 \theta_{\text{rot}} > -1}{2} = (1 - 6 D_{\text{rot}} \delta t)^{t/\delta t}$$

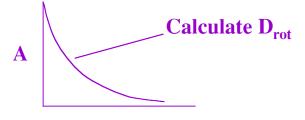
But (1-x) ≈ e^{-x} for x << 1

$$\frac{3 < \cos^2 \theta_{\text{rot}} > -1}{2} = e^{-6 D_{\text{rot}} t}$$

$$\mathbf{A} = \mathbf{A}_{\mathbf{0}} \mathbf{e}^{-\mathbf{6} \mathbf{D}_{rot}} \mathbf{t}$$

Time-resolved Anisotropy yields D_{rot}

Monitor anisotropy following a pulse of excitation light:



time

Steady State Measurement of Fluorescence Anisotropy

Fraction of photons emitted in (t, t+dt) = f(t)dt

$$f(t) = \frac{e^{-t/\tau}}{\tau} dt$$

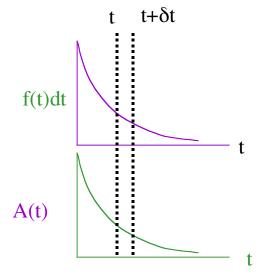
Average anisotropy

$$A = \int_{0}^{\infty} A(t) f(t) dt$$

$$A = \int_{0}^{\infty} A_{0} e^{-6D_{rot}} e^{-t/\tau} (1/\tau) dt$$

 $A = A_0 (1 + 6 D_{rot} \tau)^{-1}$

Perrin's equation



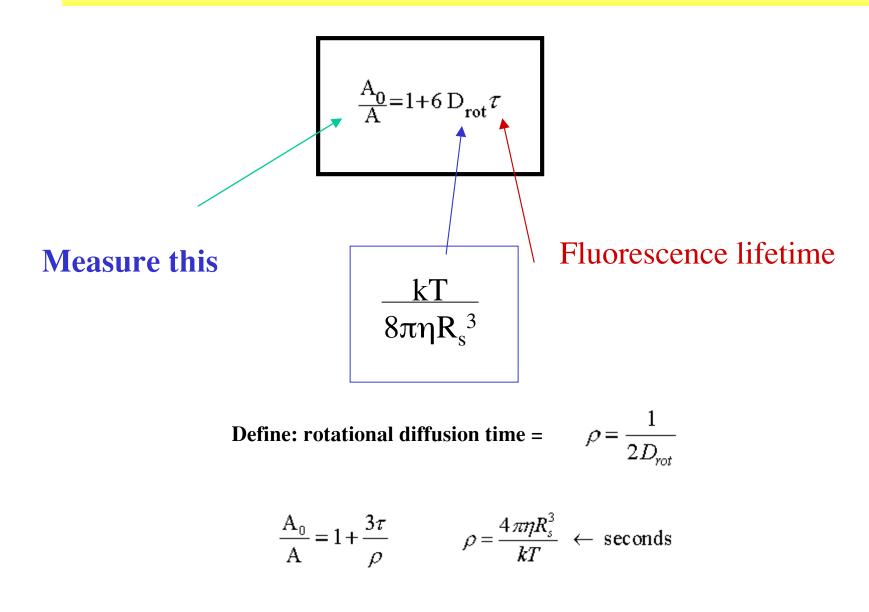
Various forms of Perrin's equation

(1)
$$\frac{A_0}{A} = 1 + 6 D_{rot} \tau$$

(2) $\left(\frac{1}{P} - \frac{1}{3}\right) = \left(\frac{1}{P_0} - \frac{1}{3}\right)(1 + 6D_{ra}\tau)$
substitute : $D_{rot} = \frac{kT}{8\pi\eta R_s^3} = \frac{kT}{6\eta V}$ $V = \text{molecular volume}$
(3) $\frac{A_0}{A} = 1 + \frac{k}{V} \left[\frac{T\tau}{\eta}\right] = 1 + C\frac{T\tau}{\eta}$
(4) $\left(\frac{1}{P} - \frac{1}{3}\right) = \left(\frac{1}{P_0} - \frac{1}{3}\right) \left(1 + \frac{\tau k}{V} \left[\frac{T}{\eta}\right]\right)$
Define: rotational diffusion time = $\rho = \frac{1}{2D_{rot}}$
 $\frac{T}{\eta} \rightarrow$

(5)
$$\frac{A_0}{A} = 1 + \frac{3\tau}{\rho}$$
 $\rho = \frac{4\pi\eta R_s^3}{kT} \leftarrow \text{seconds}$

Result for steady state fluorescence from a rotating molecule



Protein Rotational Diffusion

 $H_3C_N CH_3$

0 = S = 0

NH

I. Extrinsic Probes $H_3^C \longrightarrow CH_3 + H_2^N + H_2^N$ $CI \longrightarrow CI \longrightarrow CI$ Dansyl chloride

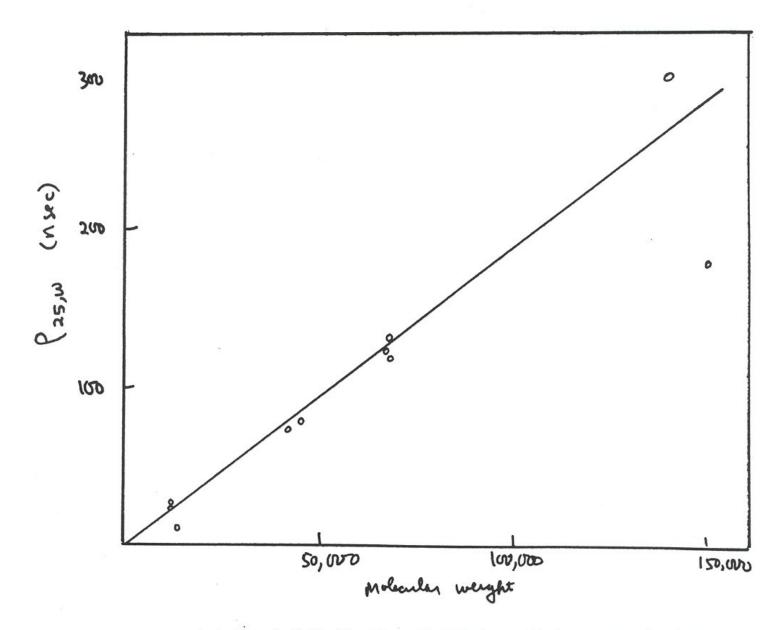
 $\tau = 14$ nsec

II. Results

Protein	М	ρ	$ ho / ho_0$
Avidin	71,000	100	1.78
BSA	67,000	127	2.39
Enolase	82,000	90	1.35
rIgG	160,000	127	1.0
LDH	138,000	188	1.65

 $\rho_0 = (3\eta V) / (kT) = (3hV_2M) / (NkT) \approx [(mol.wt) / 1.15] \times 10^{-3} \text{ nsec}$

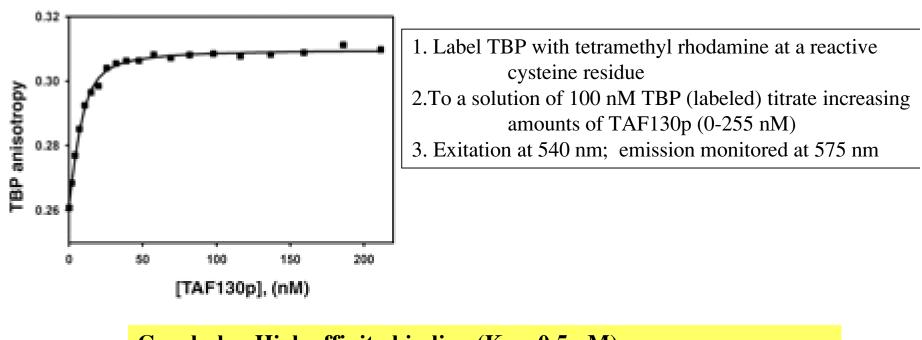
 $(A_0 / A) = 1 + (3\tau / \rho)$ Measure A_0, A, τ ____ find ρ



Rotational diffusion times of globular proteins measured using dansyl conjugates.

Example: Fluorescence Anisotropy Measurement of Protein-Protein Interactions

TATA-box Binding Protein (TBP) binds with high affinity to TBP-associated Factor subunit TAF130p

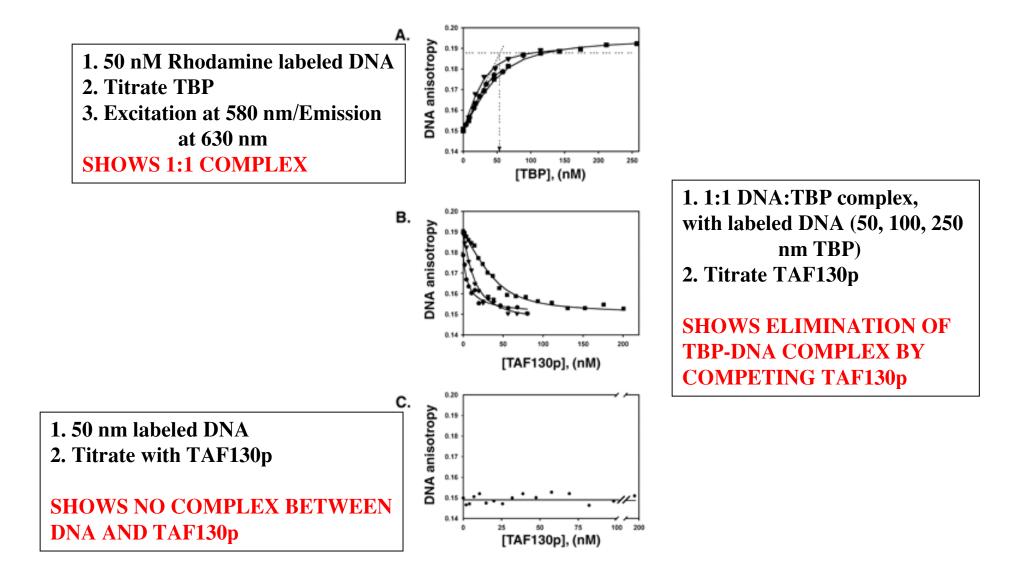


Conclude: High affinity binding (K_d = 0.5 nM)

Biological consequence: binding of TAF130p to TBP competes with DNA binding to TBP

J. Biol. Chem., Vol. 276, Issue 52, 49100-49109, December 28, 2001

Fluorescence Anisotropy used to monitor Protein-DNA Interactions



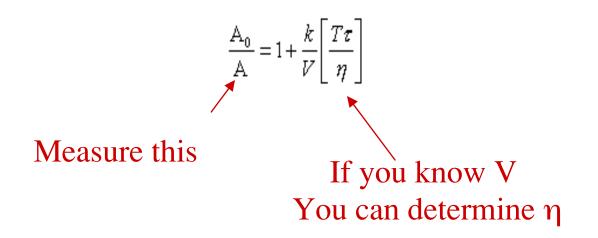
J. Biol. Chem., Vol. 276, Issue 52, 49100-49109, December 28, 2001

Fluorescence anisotropy used to measure microviscosity

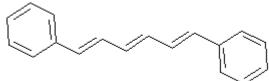
The rotational diffusion coefficient can be related to Molecular volume: V

$$D_{rot} = \frac{kT}{8\pi\eta R_s^3} = \frac{kT}{6\eta V}$$

V = molecular volume



Fluorescent Probes dissolved are used to measure Membrane microviscosity

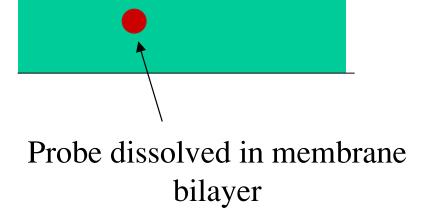


Diphenyl hexatriene (DPH)

Perylene

Hydrophobic probes:

- partition into membrane bilayer
- do not bind to protein
- rotation reports <u>local</u> viscosity



 $\frac{A_0}{A} = 1 + \frac{k}{V} \left[\frac{T\tau}{\eta} \right]$ Measure for specific probe

Molecular constant: determine for probe in known viscosity (η)

Then: $A \Rightarrow \eta$

Typically: for biological membranes

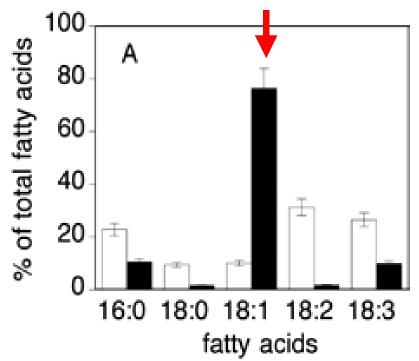
η ≈ 1 Poise

100-times the viscosity of water

Note: $(1 / \eta) =$ fluidity of membrane

Example: The effect of deletion of the gene encoding ω-6-oleate desaturase in *Arabidopsis thaliana*

Changes the fatty acid composition of the mitochondrial membrane: mostly oleic acid is present in the mutant (*fad2*)



J. Biol. Chem., Vol. 276, Issue 8, 5788-5794, February 23, 2001

Membrane Fluidity monitored by the fluorescence Anisotropy of anthroyloxy fatty acid derivatives: the fluorophore is located at different depths in the membrane bilayer

