Discussion Session prior to the Second Examination:
Sunday evening April 13
6 to 8 pm

161 Noyes Laboratory

Determination of the Stokes Radius by measuring the Rotational Diffusion Coefficient: $\mathrm{D}_{\text {rot }}$

$$
\mathbf{D}_{\text {rot }}=\frac{\mathrm{kT}}{\mathrm{f}_{\mathrm{rot}}}=\frac{\mathrm{kT}}{8 \pi \eta \mathbf{R}_{\mathrm{s}}^{3}}
$$

Isotropic rotation

Measure $\mathrm{D}_{\text {rot }}$
If you know $R_{s} \Rightarrow \eta \quad$ microviscosity

$$
\mathbf{D}_{\text {rot }}=\frac{\mathrm{kT}}{8 \pi \eta \mathbf{R}_{\mathrm{s}}{ }^{3}}
$$

If you know $\eta \Rightarrow R_{s} \quad$ molecular size, shape

Rotational Diffusion Rate can be determined by Fluorescence Spectroscopy

Fluorescence polarization (anisotropy) can measure how rapidly a molecule is tumbling in solution

Fluorescence anisotropy

For polarized excitation light, the probability of absorption of a photon depends on $\cos ^{2} \theta$

Fluorescence anisotropy

After formation of the excited state, the molecule can rotate during the time prior to photon emission

Fluorescence polarization

probability of detecting the photon
with polarization along the

$$
\begin{gathered}
\text { z-axis }=|\mu|^{2} \cos ^{2} \theta \\
\text { x-axis }=(\sin \theta \cos \omega)^{2} \\
y \text {-axis }=(\sin \theta \sin \omega)^{2}
\end{gathered}
$$

I_{z} proportional to $\left\langle\cos ^{2} \boldsymbol{\theta}\right\rangle$
Average over population
I_{x} proportional to $\left\langle\sin ^{2} \theta><\cos ^{2} \omega>\right.$
I_{Y} proportional to $\left\langle\sin ^{2} \theta><\sin ^{2} \omega>\right.$

Fluorescence polarization

$$
\text { Define } \mathbf{I}_{\|}=\mathbf{I}_{\mathbf{Z}}
$$

If we start with excitation light polarized along the z-axis, then

$$
\mathbf{I}_{\mathrm{x}}=\mathbf{I}_{\mathbf{y}}=\mathbf{I}_{\perp}
$$

The total light intensity at the detector is $I_{\text {tot }}=I_{\| I}+2 I_{\perp}$

$$
\begin{aligned}
& \text { Define: polarization, } \mathbf{P}=\frac{\mathbf{I}_{\| I}-I_{\perp}}{\mathbf{I I I}_{I I}+I_{\perp}} \\
& \text { anisotropy, } A=\frac{\mathbf{I}_{I I}-I_{\perp}}{\mathbf{I I I}^{\prime}+2 \mathbf{I}_{\perp}} \\
& A=\frac{2}{3}\left[\frac{1}{P}-\frac{1}{3}\right]^{-1}
\end{aligned}
$$

Polarization

By measuring I_{X} and I_{Z} we can compute $<\cos ^{2} \theta>$ for the emitting molecules

What goes into $<\cos ^{2} \theta>$?

(1) Photoselection

Probability of absorption $\propto \cos ^{2} \theta$

The excited state population is not randomly oriented immediately after excitation

What goes into $<\cos ^{2} \theta>$?

photoselection

What goes into $<\cos ^{2} \theta>$?

photoselection

Change μ

rotation

View each of these as a series of isotropic displacements_of the average direction of the transition dipole moment

photoselection
Change μ

Goal: Find average displacement $(\boldsymbol{\theta})$ in terms of known parameters

Use Soleillet's equation - from geometry, describing a series of isotropic displacements of a vector

$$
\frac{3<\cos ^{2} \theta>-1}{2}=\frac{3<\cos ^{2} \alpha_{1}>-1}{2} \cdot \frac{3<\cos ^{2} \alpha_{2}>-1}{2} \cdots \cdots \cdot \frac{3<\cos ^{2} \alpha_{N}>-1}{2}
$$

etc.

Perrin's equation:

$$
\langle | \theta_{\text {rot }}| \rangle \longrightarrow \mathbf{D}_{\text {rot }} \longrightarrow \text { Stokes radius }
$$

Photoselection

So $\left.\begin{array}{rl}\mathrm{A} & =0.4 \\ \mathrm{P} & =0.5\end{array}\right\}$
Maximum values of Anisotropy and Polarization

Emit from a different transition after internal conversion

(2) Change in $\underset{\sim}{\sim}$:

Large λ

A_{0} is the anisotropy obtained in the absence of molecular rotation -
e.g., using frozen solutions or solutions with high viscosity

Depends on excitation + emission wavelengths

$$
\begin{aligned}
& \text { Maximum value for } \begin{aligned}
& \lambda=90^{\circ} \text { so limits on } \mathrm{A}_{0} \text { and } \mathrm{P}_{0} \\
& \text { are } \\
&-0.2 \leq \mathrm{A}_{0} \leq 0.4 \\
&-0.33 \leq \mathrm{P}_{0} \leq 0.5
\end{aligned}
\end{aligned}
$$

Rotational Diffusion: will always tend to bring $\mathbf{A} \rightarrow 0$ or $\mathbf{P} \rightarrow 0$

$$
\mathrm{A}=\mathrm{A}_{0}\left[\frac{3<\cos ^{2} \theta_{\mathrm{rot}}>-1}{2}\right]
$$

Anisotropy of frozen sample

$$
\left.<\cos ^{2} \theta_{\text {rot }}\right\rangle=1 \text { if there is no rotation: } \mathrm{A}=\mathrm{A}_{\mathrm{o}}
$$

$$
<\cos ^{2} \theta_{\text {rot }}>=1 / 3 \text { for random orientation: } \mathrm{A}=0
$$

Rotational Diffusion

(3) Rotational Diffusion: will always tend to bring $\mathrm{A} \rightarrow 0$ or $\mathrm{P} \rightarrow 0$
A_{0} value from photoselection plus change in μ

$$
\mathbf{A}=\mathbf{A}_{0}\left[\frac{3<\cos ^{2} \theta_{\mathrm{rot}}>-1}{2}\right]
$$

Break down rotation into a series of \mathbf{N} isotropic steps of size $\delta \theta_{-}$

$$
\frac{3<\cos ^{2} \theta>-1}{2}=\frac{3<\cos ^{2} \delta \theta>-1}{2} \cdot \frac{3<\cos ^{2} \delta \theta>-1}{2} \cdots \cdots \frac{3<\cos ^{2} \delta \theta>-1}{2}
$$

$$
\cos ^{2} \delta \theta=1-\sin ^{2} \delta \theta \approx 1-\delta \theta^{2}
$$

For a small "step" Rotational Diffusion: $\left.<\delta \theta^{2}\right\rangle=4 D_{\text {rot }} \delta t$
$=1-4 D_{\text {rot }} \delta t$

$$
\frac{3<\cos ^{2} \theta_{\text {rot }}>-1}{2}=\left(1-6 D_{\text {rot }} \delta t\right)^{\frac{1 / \delta t}{N}}
$$

Rotational Diffusion

$$
\frac{3<\cos ^{2} \theta_{\text {rot }}>-1}{2}=\left(1-6 D_{\text {rot }} \delta t\right)^{t / \delta t}
$$

$$
\text { But }(1-\mathrm{x}) \approx \mathrm{e}^{-\mathrm{x}} \text { for } \mathrm{x} \ll 1
$$

$$
\frac{3<\cos ^{2} \theta_{\mathrm{rot}}>-1}{2}=\mathrm{e}^{-6 \mathrm{D}_{\mathrm{rot}}^{\mathrm{t}}}
$$

$$
\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-6 \mathrm{D}_{\mathrm{lot}} \mathrm{t}}
$$

Time-resolved Anisotropy yields $\mathbf{D}_{\text {rot }}$

Monitor anisotropy following a pulse of excitation light:

Steady State Measurement of Fluorescence Anisotropy

Fraction of photons emitted in $(\mathrm{t}, \mathrm{t}+\mathrm{dt})=\mathrm{f}(\mathrm{t}) \mathrm{dt}$

$$
f(t)=\frac{e^{-t / \tau}}{\tau} d t
$$

Average anisotropy $\quad A=\int_{0}^{\infty} A(t) f(t) d t$

$$
\begin{gathered}
A=\int_{0}^{\infty} A_{0} e^{-6 D_{\text {rot }}} e^{-t / \tau}(1 / \tau) d t \\
\mathbf{A}=\mathbf{A}_{\mathbf{0}}\left(\mathbf{1}+\mathbf{6} \mathbf{D}_{\text {rot }} \tau\right)^{-1}
\end{gathered}
$$

Perrin's equation

Various forms of Perrin's equation

(1) $\frac{\mathrm{A}_{0}}{\mathrm{~A}}=1+6 \mathrm{D}_{\text {rot }} \tau$
(2) $\left(\frac{1}{\mathrm{P}}-\frac{1}{3}\right)=\left(\frac{1}{\mathrm{P}_{0}}-\frac{1}{3}\right)\left(1+6 D_{r o t} \tau\right)$
substitute: $\mathrm{D}_{\text {rot }}=\frac{\mathrm{kT}}{8 \pi \eta \mathrm{R}_{\mathrm{s}}^{3}}=\frac{\mathrm{kT}}{6 \eta \mathrm{~V}} \quad \mathrm{~V} \equiv$ molecular volume
(3) $\frac{\mathrm{A}_{0}}{\mathrm{~A}}=1+\frac{k}{V}\left[\frac{T \tau}{\eta}\right]=1+C \frac{T \tau}{\eta}$
(4) $\left(\frac{1}{\mathrm{P}}-\frac{1}{3}\right)=\left(\frac{1}{\mathrm{P}_{0}}-\frac{1}{3}\right)\left(1+\frac{\tau k}{V}\left[\frac{T}{\eta}\right]\right)$

(5) $\frac{\mathrm{A}_{0}}{\mathrm{~A}}=1+\frac{3 \tau}{\rho} \quad \rho=\frac{4 \pi \eta R_{s}^{3}}{k T} \leftarrow$ seconds

Result for steady state fluorescence from a rotating molecule

Measure this

Define: rotational diffusion time $=\quad \rho=\frac{1}{2 D_{\text {rot }}}$

$$
\frac{\mathrm{A}_{0}}{\mathrm{~A}}=1+\frac{3 \tau}{\rho} \quad \rho=\frac{4 \pi \eta R_{s}^{3}}{k T} \leftarrow \text { seconds }
$$

Protein Rotational Diffusion

I. Extrinsic Probes

$+$

Dansyl chloride

$$
\tau=14 \mathrm{nsec}
$$

II. Results

Protein	\boldsymbol{M}	$\boldsymbol{\rho}$	$\boldsymbol{\rho} / \boldsymbol{\rho}_{\boldsymbol{0}}$
Avidin	71,000	100	1.78
BSA	67,000	127	2.39
Enolase	82,000	90	1.35
rIgG	160,000	127	1.0
LDH	138,000	188	1.65

$$
\rho_{0}=(3 \eta V) /(k T)=\left(3 h V_{2} M\right) /(\mathbf{N k T}) \approx[(\text { mol.wt }) / 1.15] \times 10^{-3} \text { nsec }
$$

$\left(\mathrm{A}_{0} / \mathrm{A}\right)=1+(3 \tau / \rho)$ Measure $\mathrm{A}_{0}, \mathrm{~A}, \tau \longrightarrow$ find ρ

Rotational diffusion times of globular proteins measured using dansyl conjugates.

Example: Fluorescence Anisotropy
 Measurement of Protein-Protein Interactions

TATA-box Binding Protein (TBP) binds with high affinity to TBP-associated Factor subunit TAF130p

1. Label TBP with tetramethyl rhodamine at a reactive cysteine residue
2. To a solution of 100 nM TBP (labeled) titrate increasing amounts of TAF130p (0-255 nM)
3. Exitation at 540 nm ; emission monitored at 575 nm

Conclude: High affinity binding ($\mathrm{K}_{\mathrm{d}}=\mathbf{0 . 5} \mathbf{n M}$)
Biological consequence: binding of TAF130p to TBP competes with DNA binding to TBP

Fluorescence Anisotropy used to monitor Protein-DNA Interactions

Fluorescence anisotropy used to measure microviscosity

The rotational diffusion coefficient can be related to Molecular volume: V

$$
\mathrm{D}_{\mathrm{rot}}=\frac{\mathrm{kT}}{8 \pi \eta \mathrm{R}_{\mathrm{s}}^{3}}=\frac{\mathrm{kT}}{6 \eta \mathrm{~V}} \quad \mathrm{~V} \equiv \text { molecular volume }
$$

Measure this

If you know V
You can determine η

Fluorescent Probes dissolved are used to measure Membrane microviscosity

Diphenyl hexatriene (DPH)

Hydrophobic probes:

- partition into membrane bilayer
- do not bind to protein
- rotation reports local viscosity

Probe dissolved in membrane bilayer

Measure for specific probe
Molecular constant: determine for probe in known viscosity (η)

Then: $\mathrm{A}=>\eta$

Typically: for biological membranes

$$
\eta \approx 1 \text { Poise }
$$

100 -times the viscosity of water

Note: $(1 / \eta)=$ fluidity of membrane

Example: The effect of deletion of the gene encoding ω-6-oleate desaturase in Arabidopsis thaliana

Changes the fatty acid composition of the mitochondrial membrane: mostly oleic acid is present in the mutant (fad2)

Membrane Fluidity monitored by the fluorescence Anisotropy of anthroyloxy fatty acid derivatives: the fluorophore is located at different depths in the membrane bilayer

depth in the membrane bilayer/position in fatty acid chain)

