## **Case Study: Actin-binding Nebulin Fragments**

Nebulin binds to the actin/tropomyosin/troponin thin filament of skeletal muscle

Multiples of repeated sequences arranged in modules

Fragments containing 2 - 15 modules retain actin binding function

Two fragments: NA3 and NA4

Question: Are NA3 and NA4 aggregated in solution?

## **Model of Nebulin binding to actin**



Sedimentation equilibrium of nebulin fragments Using the Beckman Airfuge

Conditions: 0.1 mg/ml protein 1 mM Ca<sup>++</sup>, pH 7 buffer 20% sucrose to stabilize the protein distribution during rotor deceleration







## $\mathbf{M} = \mathbf{d} \ln \mathbf{C} / \mathbf{d} \mathbf{r}^2 (2 \mathbf{R} \mathbf{T} / (\omega^2 (1 - \overline{\mathbf{V}} \boldsymbol{\rho})))$



R (gas constant) = 8.3 x 10<sup>7</sup> g cm<sup>2</sup> s<sup>-2</sup>mol<sup>-1</sup>K<sup>-1</sup>  $\omega$  = 5700 s<sup>-1</sup>  $\rho$  = 1.08 g cm<sup>-3</sup> density of 20% sucrose V = partial specific volume of nebulin fragments in 20% sucrose. Calculated from amino acid sequence 0.739 for NA3 5 0.745 for NA4 T = 300 °K Conclusion:

NA3: M = 37 kDa (monomer = 31 kDa) | Nebulin fragments NA4: M = 35 kDa (monomer = 25 kDa) | Are not aggregated What is the shape of the nebulin fragment?

**Sedimentation velocity** in a Beckman L5-50 preparative ultracentrifuge: SW41 swinging bucket rotor

Conditions: 0.05 mg/ml protein concentration 1 mM Ca<sup>++</sup>, pH 7 buffer 20% sucrose



Remove sample from the top and measure protein to determine the profile of the trailing boundary.

Spin for 18 h at 35,000 rpm at 20° C

**Sedimentation Velocity of Nebulin Fragments** 





Measured in 20% sucrose

### **Interpretation of the Sedimentation of nebulin fragments**

We can now calculate the Diffusion coefficients:

From sedimentation equilibrium  $D_{w,20} = S_{w,20} RT/(M(1 - \overline{V}_2 \rho))$ 

(Note: use values of  $\eta$ ,  $\rho$  and V that apply to the protein in water)

Results: NA3  $D_{w,20} = 3.2 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$ NA4  $D_{w,20} = 3.6 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$ 



**Interpretation of the Sedimentation of nebulin fragments** 

Calculate f/f<sub>min</sub>: From sedimentation equilibrium  

$$f/f_{min} = (kT/D_{w,20})(6\pi\eta(3M\overline{V}_2/4\pi N)^{1/3})$$

Results: NA3 
$$D_{w,20} = 3.2 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$$
  $f/f_{min} = 3.27$   
NA4  $D_{w,20} = 3.6 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$   $f/f_{min} = 2.96$ 

Nebulin fragments are highly asymmetric

$$NA3$$

$$f/f_{min} = 3.27$$

$$NA4$$

$$f/f_{min} = 2.96$$



## **Gel filtration chromatography**

 $F_{ap}$  = solvent flow  $F_{ret}$  = partitioning into stationary phase particles

small molecules partition into beads

- This retards their progress down the column

Large particles are excluded from the bead interior

-elute faster

beads -stationary phase matrix

Measure elution volume,  $V_e$ , or  $\sigma$ 

 $V_o$  = elution volume of totally **excluded** molecules  $V_I$  = elution volume of totally **included** molecules

$$\sigma = \begin{pmatrix} V_e - V_o \\ V_I - V_o \end{pmatrix}$$



measure particle velocity solvent velocity

## **Gel Filtration Chromatography**



$$\sigma = \left( \frac{V_e - V_o}{V_I - V_o} \right)$$

#### **Example:** Elution of native globular protein using Sephadex G-200

Experimentally, the retardation of macromolecules in gel filtration chromatography correlates very well with the Stokes radius measured by Diffusion

If standards and the unknown have the same shape then- and only then- does gel filtration chromatography give a good estimate of molecular weight



# Active Transport in *E. coli* Mediated by outer membrane proteins and TonB

Example: the **FhuA** transport Protein from *E*. *coli* 

-active transport system coupled To **TonB** in the cytoplasmic membrane

-required for ferric ion transport via ferrichrome complex



# Express and characterize TonB without the N-terminal membrane anchor



## Size Exclusion Chromatography of H<sub>6</sub>-TonB

#### use Superose 12 column



#### Total volume: 21 ml

measured by the elution of NaNO<sub>3</sub>

#### Void Volume: 7.3 ml

measured by the elution of Dextran blue 2000

#### Calibrate vs R<sub>s</sub>

thyroglobulin  $R_s = 8.6 \text{ nm}; V_e = 8.8 \text{ ml}$ ferritin  $R_s = 6.3 \text{ nm}; V_e = 10.7 \text{ ml}$ catalase  $R_s = 5.2 \text{ nm}; V_e = 11.7 \text{ ml}$ aldolase  $R_s = 4.6 \text{ nm}; V_e = 12.0 \text{ ml}$ bovine serum albumin  $R_s = 3.5 \text{ nm}; V_e = 12.5 \text{ ml}$ ovalbumin  $R_s = 2.8 \text{ nm}; V_e = 13.4 \text{ ml}$ chymotrypsinogen  $R_s = 2.1 \text{ nm}; V_e = 14.9 \text{ ml}$ RNase  $R_s = 1.75 \text{ nm}; V_e = 15.5 \text{ ml}$  **Size Exclusion Chromatography of H<sub>6</sub>-TonB** 



Journal of Bacteriology, May 2001, p. 2755-2764, Vol. 183, No. 9





## **Conclude that H<sub>6</sub>-TonB is a monomer in solution**

## **Sedimentation Equilibrium of H<sub>6</sub>-TonB**



# **Conclusion:** H<sub>6</sub>-TonB is a monomer in solution consistent with gel filtration/Sed. velocity

Journal of Bacteriology, May 2001, p. 2755-2764, Vol. 183, No. 9



Journal of Bacteriology, May 2001, p. 2755-2764, Vol. 183, No. 9

One can re-calculate R<sub>min</sub> assuming hydration of 0.3 g H<sub>2</sub>O/g protein

$$R_{min} = 2.0 \text{ nm}$$
  
so  $R_s/R_{min} = 2$ 

## Consistent with an ellipsoid with an axial ratio of 15:1

240 Å x 16 Å TonB goes from the inner to the outer bacterial membrane

## **Size Exclusion Chromatography of FhuA**



## $R_s = 4.8$ nm for FhuA

TLN buffer contains detergent, some of which is bound to the membrane protein to maintain the protein in solution

consistent with protein plus bound detergent:  $M_r = 185,000$ 

## Mixture of FhuA and TonB Elutes at a Smaller Volume in the presence of the FhuA Fe ligand



Journal of Bacteriology, May 2001, p. 2755-2764, Vol. 183, No. 9



However, usually electrophoresis is done in the presence of a retarding matrix such a polyacrylamide

The ability of a macromolecule to move through the retarding matrix depends on the Stokes radius

## A commonly used retarding matrix is cross-linked polyacrylamide



# Electrophoresis in a retarding matrix such as agarose or polyacrylamide



**Electrophoresis of Native proteins** 

 $\log U = \log U_{o} - K_{R} (\% T)$ 

 $\mathbf{U}_{\mathbf{0}}$  is different for each protein

since it depends on both Q and  $R_s$ 

Since the retardation coefficient  $K_R$  depends only on Stokes radius and not on charge, one can obtain  $R_s$  by determining  $K_R$ 

Measure the electrophoretic mobility vs % acrylamide the slope gives K<sub>R</sub> which can be calibrated in terms of Stokes radius

this is called a Ferguson Plot

#### Ferguson Plot to determine the Stokes radius of non-denatured protein



**Example of the Application of the Ferguson Plot** 

**GOAL**: To determine the subunit composition of bacterial dioxygenases of potential use in environmental cleanup of polychlorinated biphenyls (PCPs)

purified enzymes contain two kinds of subunits, analyzed by SDS polyacrylamide gel electrophoresis.

 $\alpha$  subunit  $\beta$  subunit

J. Biol Chem (2001)276,29833-38

## **Two enzymes were examined which have distinct** substrate specificities. In addition, a hybrid enzyme was prepared and examined.

**SDS-PAGE:** gives subunit molecular weight and approximate ratio

Relative staining intensities are consistent with 1:1 ratio of the two subunits

> 205 kDa 116 kDa 97 kDa 66 kDa **α** (~50KDa) 45 kDa lane 4. toluene dioxygenase 29 kDa β (~21 KDa)  $C1 = \alpha$  subunit  $C2 = \beta$  subunit

lane 2. biphenyl dioxygenase  $A1 = \alpha$  subunit  $A2 = \beta$  subunit

> lane 3. hybrid  $C1 = \alpha$  subunit  $A2 = \beta$  subunit

J. Biol Chem (2001)276,29833-38

## **Ferguson Plot Analysis of dioxygenases**



| ISPs          | Mol. mass<br>estimated<br>by Ferguson<br>plots | Mol. mass estimated<br>by SDS-PAGE |                             |  |
|---------------|------------------------------------------------|------------------------------------|-----------------------------|--|
|               |                                                | α<br>subunit                       | $_{\text{subunit}}^{\beta}$ |  |
| ISPBphA1A2    | 209                                            | 50.0                               | 23.0                        |  |
| ISPTodC1C2    | 160                                            | 52.5                               | 21.5                        |  |
| ISPTodC1BphA2 | 229                                            | 52.5                               | 23.0                        |  |

1. for each protein (called "ISPxx"), determine the mobility ( $R_f$ ) as a function of percent acryamide (%T)

2. Determine the slope  $(K_{r)}$  of the plot of  $logR_{f}$  vs %T

3. Plot  $\log K_r$  (slope) vs log (mol wt)

4. If standards and dioxygenases are the same shape, then molecular weight

can be determined. If the unknowns are highly asymmetric, the molecular weight will be incorrect. **Conclusions from Ferguson Plot anaylysis** 

1. biphenyl dioxygenase is a hexamer:  $\alpha^3 \beta^3$ 

2. toluene dioxygenase is a tetramer:  $\alpha^2 \beta^2$ 

3. hybrid enzyme is a hexamer:  $\alpha^3 \beta^3$ 

| ISPs          | Mol. mass<br>estimated<br>by Ferguson<br>plots | Mol. mass estimated<br>by SDS-PAGE |                             | Predicted<br>mol. mass |                       |
|---------------|------------------------------------------------|------------------------------------|-----------------------------|------------------------|-----------------------|
|               |                                                | α<br>subunit                       | $_{\text{subunit}}^{\beta}$ | α <b>3</b> β3          | α <b>2</b> β <b>2</b> |
| ISPBphA1A2    | 209                                            | 50.0                               | 23.0                        | <u>219.0</u>           | 146.0                 |
| ISPTodC1C2    | 160                                            | 52.5                               | 21.5                        | 222.0                  | 1 <u>48.0</u>         |
| ISPTodC1BphA2 | 229                                            | 52.5                               | 23.0                        | 226.5                  | 151.0                 |

**Electrophoresis** 

of double stranded DNA

of denatured RNA (no secondary structure)

of SDS - protein complexes

 $\log U = \log U_{o} - K_{R} (\% T)$ 

Within each set:

(1) shape is the same

(2) charge and size vary proportionally

 $U_o$  does not vary with molecular weight  $U_o = \frac{Q}{f} \uparrow \text{ offsetting effects}$ 

Hence, in comparing (for example) DNA samples, U varies in proportion to Stokes radius

- No need to vary % acrylamide , so one gel is sufficient

Constant value of U<sub>o</sub> for SDS-Protein Complexes allows the R<sub>s</sub> to be determined by Determining the electrophoretic mobility on a single gel and comparing to standards



#### **NATIVE PROTEINS**

**SDS-PROTEIN COMPLEXES** 

Since the SDS-Protein complexes all have the same shape: R<sub>s</sub> corrlates well with molecular weight (M)

## **Electrophoresis of Protein - SDS Complexes**



-highly asymmetric

-as length of protein increases, so does Q

 $\log U = \log U_{o} - K_{r} (\% T)$ 

 $U_{o}$  is the same for all complexes

relative mobility depends on  $R_s$  only Since the shape is the same for all complexes  $\underline{R_s} \Rightarrow \underline{Molecular Weight}$ 

Problems with SDS-PAGE one can get incorrect answers!
-U<sub>o</sub> might be different for unknown and for the standards
1. Membrane proteins (run fast)
2. Glycoproteins (run slow)

-more or less SDS bound: so (Q/f) is not the same (usually 1.4 g SDS / g protein for a typical soluble protein)
-glycoproteins can have substantial carbohydrate component that does not bind SDS
-shape may not be same due to incomplete unfolding (membrane proteins)

# SDS-PAGE of Purified H<sub>6</sub>-TonB Gives an incorrect value of the molecular weight

Expected molecular weight: 24.9 kDa Estimated M<sub>r</sub> from SDS-PAGE Mobility: 35 kDa same as wild type TonB reason is not known



Chemical Crosslinking of FhuA and His<sub>6</sub>-TonB Shows the presence of a 1:1 Complex Enhanced by ferricrocin and inhibited by 1 M NaCl



### **Electrophoresis of double-strand DNA**



### →compare with standards←

Whenever you have secondary structure this approach fails

1.  $U_0$  need not be the same for unknown and standard set

2.  $R_s$  will not simply be related to # basepairs (or mol wt) if the shape of the unknown is not the same as the shape of the standard set

-Hence, one needs to denature RNA to obtain the correct molecular weight from a single gel.

# Stacking and Discontinuous Gels

#### Zonal analysis depends on having sharp, well defined bands

1 create a large electric field (voltage drop) in the sample buffer to concentrate the protein prior to separation by the gel







Alternative: Dilute running buffer (1/10) to make sample buffer ( $U_1 = U_2$ )

 $J_1 = C_1 U_1 E_1 = C_2 U_1 E_2 = J_2$ (low) (high) in sample region Two variants of gel electrophoresis

1. Gel mobility-shift assay for protein-DNA interactions

2. Pulsed field gel electrophoresis for separating very large DNA (chromosomes)

## **Gel Mobility - Shift Assay**

for quantitative and qualitative characterization of DNA-protein interactions



## Gel Mobility shift assay

## Why does this work?

**1**. **Free DNA** and **Bound DNA** species (along with free protein) are stacked and moved into the gel **before there is any time for protein dissociation** 

Takes ~ 1 min to complete this process



2 Once in the gel, the DNA-protein complexes are virtually **locked together** 

WHY?

- low salt
- excluded volume effect of gel
- "cage" effect of the gel

(not fully understood)

## **Gel Mobility Shift Assay**

can provide all the information for a binding isotherm



## **Gel Mobility Shift Assay of a Protein-RNA Complex**

# Goal is to measure the K<sub>d</sub> of the complex formed between a t-RNA<sup>gln</sup> mutant and the glutaminyl-tRNA synthetase





Residues altered in high affinity mutant

## Gel shift assay

 Use radioactive label on tRNA to detect on the gel
 Incubate tRNA/protein mixture for 15 min 200 pM tRNA 6.6 nM to 66 pM Gln-tRNA Synthase (GlnRS)
 Load onto 20% polyacrylamide gel and run for 5 h at 4° C
 Autoradiography to determine bound and free tRNA
 Fit to binding isotherm for 1:1 complex formation



## Binding isotherm for tRNA/protein Complex

$$K_{d} = 0.27 \text{ nM}$$



# Pulsed Field Gel Electrophoresis

In normal electrophoresis - electrophoretic mobility is **independent** of molecular weight for large DNA (> 50 kbp)

because it becomes elongated in the electric field



Pulsed field gel electrophoresis is designed for separating very large DNA fragments (>100 kbp) and takes advantage of this relaxation/elongation property

### In pulsed field gel electrophoresis, the DNA is allowed to "relax" after a brief pulse of electric field and then the direction of the electric field is changed

- this results in a strong length-dependence of electrophoretic behavior



critical parameters

- DNA relaxation time  $(T_R)$  vs electrophoresis pulse time  $(T_P)$ 



