

Using the Preparative Ultracentrifuge

Finding the S-value

typically a sucrose gradient is used to prevent turbulence due to convection

$$S = \frac{M (1 - V_2 \rho)}{N f}$$

But the gradient makes computation of the S-value very difficult because in the sucrose density gradient,

 ρ is not constant and **η** is not constant (**f** = 6π**η** R_s)

for proteins: $\overline{V}_2 \approx 0.75 \text{ mL/g}$

-can compute from amino acid composition

2 **f** can be obtained from another experiment: <u>gel filtration</u>, <u>diffusion</u> (Stokes radius \Rightarrow f)

combination of sedimentation and gel filtration can yield \underline{M} .

Combining Sedimentation and Diffusion

$$D = \frac{kT}{f} = \frac{kT}{6\pi\eta R_s}$$
Any method yielding
R_s can be used.
This is now most
frequently obtained by
gel filtration
chromatography

$$\left(\frac{S}{D}\right) = \frac{M(1-\overline{V}_2 \rho)}{RT}$$

The frictional coefficient drops out of the equation

This used to be one of the standard methods to obtain protein molecular weight

Sedimentation Coefficients and Molecular Weights of Some Proteins and Viruses				
	$s^0_{20,w} \times 10^{13}$	$D^0_{20,w} \times 10^7$	\bar{v}_2	М
Ribonuclease47	1.64	11.9	0.728	12,400
Lysozyme ⁴⁸	1.87	10.4	0.688	14,100
Chymotrypsinogen ³⁷	2.54	9.5	0.721	23,200
B-Lactoglobulin ⁵¹	2.83	7.82	0.751	35,000
Ovalbumin ⁴⁹	3.55	7.76	0.748	45,000
Serum albumin ⁶⁷	4.31	5.94	0.734	66,000
Hemoglobin ⁶⁰	4.31	6.9	0.749	60,000
Catalase ³⁹	11.3	4.1	0.73	250,000
Fibrinogen ⁶⁹	7.9	2.02	0.706	330,000
I Irease ⁵⁰	18.6	3.46	0.73	480,000
Myosin ⁷⁸	6.4	1.0	0.728	570,000
Bushy stunt virus ⁴⁵	132	1.15	0.74	10,700,000
Tobacco mosaic virus ⁶⁴	170	0.3	0.73	50,000,000

in water (correct for viscosity and temperature from conditions of actual measurement)

To obtain the <u>molecular weight of the native form of</u> <u>an enzyme</u> (subunit association), the combination of sedimentation - gel filtration (R_s) is very useful

(from Tanford)

Example 1: Hemoglobin Dissociation at low pH

$$S = \frac{M (1 - V_2 \rho)}{N 6 \pi \eta R_s}$$

$$\frac{S}{D} = \frac{M(1-\overline{V}_2 \rho)}{RT}$$

Example 2: Expansion of BSA at low pH

Using Standards of known S-value to estimate molecular weight of an unknown

1 The best method to obtain M from a measured S-value is to independently get V_2 and f, and then obtain M in the equation below:

$$S = \frac{M(1 - V_2 \rho)}{Nf} \qquad f = 6\pi \eta R_s$$

2 Can convert $S \Rightarrow M$ if you compare with <u>known standards</u>. <u>However</u>: M must be the only independent parameter

<u>But</u>: if unknown is ellipsoid $f > f_{sphere}$ (then f and M are not correlated) $S > S_{sphere}$, get wrong <u>M</u>

Using standards to get M from the S-value

The key to using a comparison to standards to obtain **M** is that molecular weight be the only independent parameter. (Also true for electrophoresis and for gel filtration chromatography)

If all standards <u>and</u> the unknown are same shape and have the same $\overline{V_2}$, then S will be a smooth and predictable function of Molecular weight.

$$S \propto \frac{M}{f} \propto \frac{M}{f(M)}$$

You will get the wrong value of M if the shape of the unknown is not the same as the shape of the standards to which it is compared. You will get the wrong value of M if the value of \overline{V}_2 is incorrect. Glycoproteins, proteins with lipids and/or detergents bound to them are examples where the anhydrous volume per gram of the particle is not a trivial matter to obtain. **Example: determination of the S-value of GlpF the glycerol transport facilitator protein from** *E. coli*

$$S = \frac{M (1 - \overline{V}_2 \rho)}{N f}$$

Empirical correlation of the S-value of soluble protein standards using sedimentation velocity in a 5-20% sucrose density (neither ρ nor f are constant!)

PNAS (2001) 98, 2888-2893

Using the Preparative Ultracentrifuge

<u>Preparative Applications</u>: Differential Sedimentation

1) Larger size particles (larger M/f): sediment faster (pellet vs supernatent.

2) Higher **density** particles (smaller V_2): sediment faster

3) More **compact** particles (smaller f): sediment faster

$$S = \frac{M (1 - V_2 \rho)}{N f}$$

Using the Preparative Ultracentrifuge

Examples:

- 1. **lipoproteins** (separate on the basis of density)
- 2.protein nucleic acid complexes (separated from protein and DNA by density differences)
- 3. **RNA**: usually must denature to eliminate 3° structure to separate on the basis of size
- 4 .DNA forms differ in shape/size from each other

DNA Supercoiling: induced by binding intercalating molecules (such as ethidium bromide) that insert between basepairs and unwind the double helix

more supercoils makes the DNA more compact

change in shape results in a change in S-value

Discovery of DNA Supercoiling by Analytical Centrifugation (1968)

Sedimentation equilibrium

Best method is to use an analytical centrifuge

measure C(r) vs r optically

Need pure material to do this

Sedimentation equilibrium using an analytical ultracentrifuge

Alkyl hydroxyperoxide reductase from *S. typhimurium*

Recombinant heterodimer generated to study electron transfer properties

Two subunits are co-expressed in *E. coli*: subunit size: 34,000 and 55,000 (AhpF and AhpC)

Question: what is the molecular weight of the isolated complex with enzymatic activity?

Sedimention equilibrium of AhpF/AhpC complex

Beckman Optima analytical ultracentrifuge: monitor A_{280} in the centrifuge cell

Conditions:

several protein concentrations from 3 to 34 μM

115 µl per sample

calculated $\overline{V} = 0.743 \text{ cm}^3/\text{g}$

measured solvent density, $\rho = 1.0058$ g/cm³

Temperature = 20° C

Rotor speed varied from 8000, 9500 and 14000 rpm collect data at 8, 10 and 12 h for each speed

Sedimentation equilibrium data of Alkyl hydroxyperoxide reductase

 $\mathbf{M} = \mathbf{d} \, \ln \, \mathbf{C} / \mathbf{d} \mathbf{r}^2 (\mathbf{2} \, \mathbf{R} \, \mathbf{T} / (\omega^2 (1 - \overline{\mathbf{V}} \rho)))$

Result: $M = 86,200 \pm 200$

Conclusion: Enzyme contains one copy of each subunit Sedimentation Equilibrium without an analytical ultracentrifuge

Alternatives to the analytical ultracentrifuge

1) the airfuge

2) the preparative ultracentrifuge

Airfuge nables you to measure the distribution of material in a centrifuge tube qusing biochemical techniques

- small, high speed (desktop)
- sample solution for biochemical assays
- get $\ln c(r)$ vs r^2 from impure material
 - enzyme assays
 - binding assays
 - antibody detection

Preparative Ultracentrifuge

- 1. Can use like the airfuge and remove sample to measure material distribution
- 2. Can use a **density gradient centrifugation** to separate particles on the basis of V_2

Sedimentation equilibrium in a density gradient

- use sucrose, CsCl, KBr, etc to establish a density gradient in the centrifuge tube
-either make the gradient prior to centrifugation or
establish the gradient during centrifugation

This creates a 3-component system

1) solute - 2) water - 3) density forming co-solvent (eg, sucrose) must use the partial specific volume of hydrodynamic particle Vol/gram (particle) Solution density (varies with position in the tube, r) $S = \frac{M \left[1 - \overline{V}_{h}\rho(r)\right]}{N f}$ when $\rho(r) = \frac{1}{\overline{V}_{h}}$ S = 0Sedimentation Equilibrium Flotation S < 0 S < 0 $P < 1/\overline{V}_{h}$ particle density greater than density of solution $-\rho < 1/\overline{V}_{h}$ particle density equal to density of solution $-\rho < 1/\overline{V}_{h}$ particle density less than density of solution

At $r_o: \frac{1}{\rho_o} = \overline{V}_h = \frac{\overline{V}_2 + \delta_{H2O}}{1 + \delta_{H2O}}$

at the peak (this does <u>not</u> take into account any salt or ions)

Applications of sedimentation equilibrium in a density gradient for analysis and for preparative purposes

1 Different membranes or organelles can be separated on the basis of density

<u>*E.coli*</u>: inner + outer membranes <u>eukaryotic</u>: rough + smooth ER

- 2 Serum lipoproteins: LDL, HDL etc
- 3 DNA with different GC content

$$\rho = 1 = 1.66 + 0.09 \bullet f_{GC}$$
$$\overline{V_h}$$

- 4 Single vs double-strand DNA
- 5¹⁵N vs¹⁴N containing DNA (or DNA with Br-U instead of T)

6 Supercoils with different amounts of bound ethidium bromide - have different \overline{V}_h values

Some particles cannot be separated based on differences in S value

Case Study: Actin-binding Nebulin Fragments

Nebulin binds to the actin/tropomyosin/troponin thin filament of skeletal muscle

Multiples of repeated sequences arranged in modules

Fragments containing 2 - 15 modules retain actin binding function

Two fragments: NA3 and NA4

Question: Are NA3 and NA4 aggregated in solution?

Model of Nebulin binding to actin

Sedimentation equilibrium of nebulin fragments Using the Beckman Airfuge

Conditions: 0.1 mg/ml protein 1 mM Ca⁺⁺, pH 7 buffer 20% sucrose to stabilize the protein distribution during rotor deceleration

Spin solution for 80 h at 54,000 rpm ($\omega = 5700 \text{ s}^{-1}$)

$\mathbf{M} = \mathbf{d} \ln \mathbf{C} / \mathbf{d} \mathbf{r}^2 (2 \mathbf{R} \mathbf{T} / (\omega^2 (1 - \overline{\mathbf{V}} \boldsymbol{\rho})))$

R (gas constant) = 8.3 x 10⁷ g cm² s⁻²mol⁻¹K⁻¹ ω = 5700 s⁻¹ ρ = 1.08 g cm⁻³ density of 20% sucrose V = partial specific volume of nebulin fragments in 20% sucrose. Calculated from amino acid sequence 0.739 for NA3 5 0.745 for NA4 T = 300 °K Conclusion:

NA3: M = 37 kDa (monomer = 31 kDa) | Nebulin fragments NA4: M = 35 kDa (monomer = 25 kDa) | Are not aggregated What is the shape of the nebulin fragment?

Sedimentation velocity in a Beckman L5-50 preparative ultracentrifuge: SW41 swinging bucket rotor

Conditions: 0.05 mg/ml protein concentration 1 mM Ca⁺⁺, pH 7 buffer 20% sucrose

Remove sample from the top and measure protein to determine the profile of the trailing boundary.

Spin for 18 h at 35,000 rpm at 20° C

Sedimentation Velocity of Nebulin Fragments

Measured in 20% sucrose

Interpretation of the Sedimentation of nebulin fragments

1. We can now calculate the Diffusion coefficients:

From sedimentation equilibrium $D_{w,20} = S_{w,20} RT/(M(1 - V\rho))$

2. From this, calculate f/f_{min} :

$$f/f_{min} = (kT/D_{w,20})(6\pi\eta(3MV/4\pi N_o)^{1/3})$$

(Note: use values of η , ρ and V that apply to the protein in water)

Results: NA3
$$D_{w,20} = 3.2 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$$
 $f/f_{min} = 3.27$
NA4 $D_{w,20} = 3.6 \times 10^{-7} \text{ cm}^2 \text{s}^{-1}$ $f/f_{min} = 2.96$

Nebulin fragments are highly asymmetric

$$NA3$$

$$f/f_{min} = 3.27$$

$$NA4$$

$$f/f_{min} = 2.96$$

