Measuring the size and shape of macromolecules
Hydrodynamics: study of the objects in water How do the move?

Translation
Rotation

1) Movement with no external forcefree diffusion
2) Movement under the influence of an external forcee.g. centrifuge electrophoresis

Hydrodynamics techniques measure the frictional resistance of the moving macromolecule in solution:

1. Intrinsic viscosity
the influence of the object
on the solution properties
2. Free translational diffusion
3. Centrifugation/sedimentation
4. Electrophoresis
5. Gel filtration chromatography
6. Free rotational diffusion/fluorescence anisotropy

Hydrodynamics

Measurements of the motion of macromolecules in solution form the basis of most methods used to determine molecular size, density, shape, molecular weight

Equations based on the behavior of macroscopic objects in water can be used successfully to analyze molecular behavior in solution

sphere

ellipsoid
(prolate, oblate)

disk

rod etc.

Techniques

Free Motion

Viscosity
translational diffusion rotational diffusion

Mass Transport
sedimentation
electrophoresis gel filtration

shear plane: frictional resistance to motion depends on

$$
\left\{\begin{array}{l}
\text { size } \\
\hline \text { shape }
\end{array}\right.
$$

Hydrodynamic Parameters

1. Specific volume: (Inverse of density)

$$
\left.\begin{array}{rc}
\frac{\text { volume }}{\text { gram }}=V_{i} & \begin{array}{l}
1 \\
2
\end{array}=\text { solvent }
\end{array}\right\}
$$

$$
\text { Proteins: } \mathrm{V}_{2} \sim 0.7-0.75 \mathrm{~mL} / \mathrm{g} \quad \mathrm{Na}^{+} \mathrm{DNA}: \mathrm{V}_{2} \sim 0.5-0.53 \mathrm{~mL} / \mathrm{g}
$$

Hydrodynamic Parameters

2. Partial specific volume: change in volume per gram under specific conditions

$$
\overline{\mathrm{V}}_{\mathrm{i}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{~g}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{~g}_{\mathrm{j}}}
$$

$$
\begin{array}{ll}
\text { Volume }=\overline{\mathrm{V}}_{1} \mathrm{~g}_{1}+\overline{\mathrm{V}}_{2} \mathrm{~g}_{2} & \text { Gibbs - Duham relationship }
\end{array}
$$

We will assume that specific volume is approximately equal to the partial specific volume: $V_{i} \approx V_{i}$
Proteins: $\mathrm{V}_{\mathrm{P}} \sim 0.7-0.75 \mathrm{~mL} / \mathrm{g} \quad \mathrm{Na}^{+}$DNA: $\mathrm{V}_{\mathrm{DNA}} \sim 0.5-0.53 \mathrm{~mL} / \mathrm{g}$

3. Effective mass

Take into account buoyancy by subtracting the mass of the displaced water
[mass - (mass of displaced water)]

$$
\left[m-m\left(\overline{\mathbf{V}}_{2} \rho\right)=m\left(1-\overline{\mathbf{V}}_{2} \rho\right)\right]
$$

$$
\frac{\mathrm{M}\left(1-\overline{\mathrm{V}}_{2} \rho\right)}{\mathrm{N}}
$$

$\mathbf{m} \overline{\mathbf{V}}_{2}=$ volume of particle
$\mathbf{m} \nabla_{2} \rho=$ mass of displaced solvent

$$
\begin{aligned}
& \rho=\text { solvent density } \\
& \overline{\mathbf{V}}_{2}=\frac{\mathrm{Vol}}{\mathrm{~g}} \text { of the molecule } \\
& \mathrm{m}=\text { mass of molecule } \\
& \mathrm{m}=(\mathrm{M} / \mathrm{N})
\end{aligned}
$$

4. Hydration

$$
\delta_{1}=\frac{g_{\mathrm{H} 2 \mathrm{O}}}{g_{\text {protein }}}
$$

Problems of hydrodynamic measurements in general--

$$
\begin{array}{ll}
\text { Properties depend on : } & \text { 1) size } \\
\text { too many parameters! } & \text { 2) shape } \\
& \text { 3) solvation }
\end{array}
$$

Some solutions to obtain useful information:

1 Use more than one property and eliminate one unknown. Example: sedimentation (S°) and diffusion (D) can eliminate shape factor

2 Work under denaturing conditions to eliminate empirically the shape factor and solvation factors. These are constants for both standards and the unknown sample - then find Molecular weight.

$$
\text { Examples: 1) gel filtration of proteins in } \mathrm{GuHCl} ; ~ 2) \text { SDS gels. }
$$

3 If Molecular weight is known: compare results with predictions based on an unhydrated sphere of mass M . Then use judgement to explain deviations on the basis of shape or hydration.

Behavior of limiting forms - eg; rods, spheres- are calculated for comparisons

Next we consider:

1 What effect does the interaction of the hydrodynamic particle and the solvent have on solution properties?

viscosity

2 What effect does the particle-solvent interaction have on the motion of the particle?
$\frac{\text { translational motion }}{\text { - free }}$
\quad - in a force field
rotational motion

Viscosity

Frictional interactions between "layers" of solution results in energy dissipation

$\eta \equiv$ coefficient of viscosity
cgs units \equiv Poise
η is related to the amount of energy dissipated per unit volume per unit time

Many ways to measure solution viscosity
> capillary viscometer: measures the rate of flow of solution through a capillary with a pressure drop P

Effect of macromolecules on viscosity: only 2 parameters

viscosity effects are very large for very elongated polymers (large \boldsymbol{v}) (e.g. actin) or molecules that "occupy" large volume (large ϕ) (e.g. DNA)

Relative viscosity and Specific viscosity

$$
\begin{aligned}
& 1\left(\frac{\eta}{\eta_{\mathrm{o}}}\right)=\eta_{\mathrm{r}} \text { relative viscosity }=1+v \phi \\
& 2\left(\frac{\eta-\eta_{\mathrm{o}}}{\eta_{\mathrm{o}}}\right)=\eta_{\mathrm{sp}} \text { specific viscosity } \\
& \eta_{\mathrm{sp}}=\eta_{\mathrm{r}}-1=v \phi \\
& \text { But } \phi=\overline{\mathrm{V}}_{\mathrm{h}} \cdot \mathrm{c} \\
& \frac{\eta_{\mathrm{sp}}}{\mathrm{c}}=v \cdot \overline{\mathrm{~V}}_{\mathrm{h}}
\end{aligned}
$$

$$
v=\text { shape factor }
$$

$$
\phi=\text { fraction of solution }
$$

volume occupied by
solvent particles

$$
\underline{\mathrm{c}}=\mathrm{g} / \mathrm{mL} \text { solvent }
$$

$$
\overline{\mathrm{V}}_{\mathrm{h}}=\text { volume per gram of }
$$

protein occupied by solvated
particle
ideally, the increase in specific viscosity per gram of solute should be a constant

Shape factor
$\mathrm{vol} / \mathrm{g}$ of protein of hydrated particle

Non-ideal case (i.e.,reality):
$\left(\frac{\eta_{\mathrm{sp}}}{\mathrm{c}}\right)=v \cdot \overline{\mathrm{~V}}_{\mathrm{h}}+($ const. $) \cdot \mathrm{c}+\ldots$

Extrapolate measurement to infinite dilution: Intrinsic viscosity

$\lim \left(\eta_{\text {sp }} / c\right)=[\eta] \quad$ limit at low concentration (intercept in graph above) $\mathrm{C} \rightarrow 0$

Intrinsic viscosity: $[\eta], \quad$ units $=\mathrm{mL} / \mathrm{g}$

$$
[\eta]=v \cdot \bar{V}_{h}
$$

Intrinsic viscosity is dependent only on size and properties of the isolated macromolecule.

Intrinsic viscosity

$$
[\eta]=v \cdot \bar{V}_{h}
$$

if $v=25$ then $[\eta]$ is 10 x larger

$$
[\eta]=v \cdot \sigma_{h}
$$

if we assume a spherical shape, $v=2.5$, we will calculate an incorrect and very large value for $\overline{\mathrm{V}}_{\mathrm{h}}$

For a flexible polymer like DNA or denatured protein

Behaves like compact particles with $\mathrm{R} \approx \mathbf{0 . 8} \mathbf{x}$ radius of gyration (radius of gyration measures mass distribution and can be obtained from light scattering)
example: $\quad[\eta] \approx 4 \mathrm{~mL} / \mathrm{g} \quad$ for a native, globular protein
But for a random coil, if there is $\sim 100 \mathrm{~g}$ "bound" solvent per gram solute

$$
\begin{aligned}
& \overline{\mathrm{V}_{\mathrm{h}}} \approx \overline{\mathrm{~V}}_{2}+100 \approx 100 \mathrm{~mL} / \mathrm{g} \\
& {[\eta]=2.5 \cdot \overline{\mathrm{~V}}_{\mathrm{h}}} \\
& \text { very large "coil" }
\end{aligned}
$$

Viscosity : examples

I Native Hemocyanin $\left(\mathbf{M}=10^{6}\right)$ native vs GuHCl denatured

II T7 DNA (double strand) : salt dependence

Stokes Radius

Radius of the sphere which has the hydrodynamic properties consistent With the hydrodynamic measurement

Solve for the Stokes radius:

$$
R_{s}=\left[\frac{M}{N} \cdot \frac{3}{4 \pi} \overline{\mathrm{~V}}_{\mathrm{h}}\right]^{1 / 3} \quad \text { where } \overline{\mathrm{V}}_{\mathrm{h}}=[\eta] / 2.5
$$

MINIMUM RADIUS

The radius expected if the molecule is an anhydrous sphere

$$
\begin{aligned}
& \overline{\mathrm{V}}_{2}=\frac{\left[4 / 3 \pi \mathrm{R}_{\min }^{3}\right]}{(\mathrm{M} / \mathrm{N})} \quad \text { anhydrous sphere - point of reference } \\
& \mathrm{R}_{\min }=\left[\frac{\mathrm{M}}{\mathrm{~N}}\left(\frac{3}{4 \pi}\right) \overline{\mathrm{V}}_{2}\right]^{1 / 3} \quad \text { CALCULATED }
\end{aligned}
$$

Compare the Stokes radius (measured) to the "minimum radius" expected assuming the molecule is an anhydrous sphere

Question: How close does the assumption of an anhydrous sphere come to explaining the value of $\mathbf{R}_{\mathrm{s} \text { ? }}$

If $R_{s} / R_{\text {min }}$ is not much larger than 1.0 , then the assumption of the molecule being spherical is likely reasonable.
R_{s} should be slightly larger than $R_{\text {min }}$ due to hydration

If $R_{s} / R_{\text {min }}$ is much larger than 1.0, then either the molecule is not spherical $(v \gg 2.5)$ or it is not compact $\left(\overline{\mathbf{V}}_{h} \gg \overline{\mathbf{V}}_{2}\right)$

For an anhydrous particle:	$[\eta]=v \cdot \overline{V_{2}}$
for an anhydrous sphere: $v=$	2.5
	$[\eta]=2.5 \cdot \overline{V_{2}}$

For real macromolecules, the intrinsic viscosity will vary from the above due to

1. correction due to hydration

$$
v=2.5 \quad \overline{\mathbf{V}}_{\mathrm{h}}\left(\text { hydrated vol } / \mathrm{g}=\overline{\mathbf{V}}_{2}+\boldsymbol{\delta}_{\mathrm{H} 20}\right)
$$

2. correction due to asymmetry

$$
v>2.5
$$

$$
\overline{\mathrm{V}_{\mathrm{h}}}=\overline{\mathrm{V}_{2}}(\text { anhydrous vol } / \mathrm{g})
$$

or both hydration and asymmetry

$$
v>2.5
$$

$$
\overline{\mathbf{V}}_{\mathrm{h}}=\overline{\mathbf{V}}_{2}+\delta_{\mathrm{H} 2 \mathrm{O}}
$$

Comparison of intrinsic viscosity values for two proteins:

1. Ribonuclease:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{wt}^{2} 13,683 \\
& \overline{\mathrm{~V}}_{2}=0.728 \mathrm{ml} / \mathrm{g} \\
& \mathrm{R}_{\min }=17 \AA
\end{aligned}
$$

2. Collagen:

$$
\begin{aligned}
& \mathrm{mol} \mathrm{wt:}^{245}, 000 \\
& \mathrm{~V}_{2}=0.695 \mathrm{ml} / \mathrm{g} \\
& \mathrm{R}_{\text {min }}=59 \AA
\end{aligned}
$$

Interpreting Viscosity Data:

Does a reasonable amount of hydration explain the measured value of $[\eta]$?

protein	[$\dagger 7] \mathrm{mL} / \mathrm{g}$	$\mathrm{R}_{\mathrm{s}}(\mathrm{A})$	$\frac{\text { maximum solvation }}{\delta_{\mathrm{H} 2 \mathrm{O}}(\mathrm{~g} / \mathrm{g})}$	maximum asymmetry	
				v	(a/b)
Ribonuclease	3.3	19.3	0.59	4.5	3.9
Collagen	1150	400	460	1660	175

$$
[\eta]=v \overline{\mathrm{~V}}_{\mathrm{h}}=\frac{v\left[4 / 3 \pi \mathrm{R}_{\mathrm{s}}{ }^{3}\right] \mathrm{N}}{\mathrm{M}}
$$

Stokes Radius

$$
\mathrm{R}_{\mathrm{s}}=\left(\frac{3[\eta] \mathrm{M}}{4 \pi \mathrm{Nv}}\right)^{1 / 3} 2.5
$$

$$
\begin{array}{ll}
\text { Appropriate for collagen } & \overline{\mathrm{V}_{\mathrm{h}}}=\overline{\mathrm{V}}_{2} \text { (anhydrous value) } \\
\mathrm{R}_{\mathrm{s}} / \mathrm{R}_{\min }=\begin{aligned}
& 6.8(400 / 59) \\
& \text { shape correction: }
\end{aligned} & v>2.5 \\
\hline
\end{array}
$$

hydration correction: $\quad \overline{\mathrm{V}}_{\mathrm{h}}=\overline{\mathrm{V}}_{2}+\delta_{\mathrm{H} 2 \mathrm{O}}$
Appropriate for ribonuclease
$\mathbf{R}_{\mathrm{s}} / \mathbf{R}_{\text {min }}=1.14(\mathbf{1 9 . 3} / \mathbf{1 7}) \quad v=2.5$

