FRET: Fluorescence Resonance Energy Transfer

example: Barnase

Donor is W71 Acceptor is W94

"trap" of transfered excitation by internal conversion

(1) Fluorescence quenching of Donor due to Acceptor $=>k_{t}$
(2) If Acceptor also fluoresces, measure induced (enhanced) fluorescence of the Acceptor $=>\mathrm{k}_{\mathrm{t}}$

From k_{t}, get R_{DA}, distance

Transfer rate depends on:

(1) Distance
(2) Orientation of ${\underset{\sim}{D}}^{\sim}, \underset{\sim}{\mu}$
(3) Probability of donor de-excitation and acceptor excitation - transition probabilities $\left(\underset{\sim}{\mu_{\mathrm{D}}^{2}}, \underset{\sim}{\mu_{A}^{2}}\right)$
(4) Energy matching

Interaction energy given by dipole-dipole term
interaction
energy of two
dipoles
$\longrightarrow \mathrm{U}=\frac{1}{\mathrm{n}^{2} \mathrm{R}^{3}}\left[\underset{\sim}{\mu_{\mathrm{D}}}, \underset{\sim}{\mu_{\mathrm{A}}}-3\left(\underset{\sim}{\mu_{\mathrm{D}}} \hat{\mathrm{R}}\right)(\underset{\sim}{\mu} \hat{\mathrm{R}})\right]$

$$
\mathrm{k}_{\mathrm{t}} \propto \mathrm{U}^{2} \propto 1 / \mathrm{R}^{6}
$$

Donor transition probability

For random orientation: $\boldsymbol{\kappa}^{2}=2 / 3$: this is the value that is used in most estimations

Donor transition probability

Energy overlap Factor: J

$$
\frac{\int F_{D}(\bar{v}) \cdot \epsilon_{A}(\bar{v}) \frac{d \bar{v}}{\bar{\nu}^{4}}}{\int F_{D}(\bar{v}) d \bar{v} \cdot \underbrace{\int \varepsilon_{A}(\bar{v})}_{\left|\mu_{\mathrm{A}}\right|^{2}} d \bar{v}}=J
$$

Barnase: donor is W71 acceptor is W94

Transition probability of donor absorption $\left(\mu_{\mathrm{D}}\right)^{2}$ is related to the rate constant for fluorescence from the donor $\left(\mathrm{k}_{\mathrm{f}}\right)$

$$
\begin{gathered}
\mathrm{k}_{\mathrm{t}} \propto \frac{\left|\mu_{\mathrm{d}}\right|^{2}\left|\mu_{\mathrm{A}}\right|^{2} \boldsymbol{\kappa}^{2}}{\mathrm{n}^{4} \mathrm{R}^{6}} \mathrm{~J} \\
\left|\mu_{\mathrm{D}}\right|^{2} \propto \mathrm{k}_{\mathrm{f}}=\left(\mathrm{Q}_{\mathrm{f}}^{\mathrm{D}} / \tau_{\mathrm{D}}\right) \quad \frac{\text { Quantum yield }}{\text { lifetime }} \\
\mathrm{k}_{\mathrm{t}}=\text { constant } \times \frac{\boldsymbol{\kappa}^{2} \mathrm{Q}_{\mathrm{f}}^{\mathrm{D}} \mathrm{~J}}{\mathrm{n}^{4} \tau_{\mathrm{d}} \mathrm{R}^{6}}
\end{gathered}
$$

Defining R_{0} for a donor/acceptor pair

$k_{t}=$ constant $x \frac{\kappa^{2} Q_{f}^{D} J}{n^{4} \tau_{d} R^{6}} \quad$ orientation factor: often assigned value of $2 / 3$
quantum yield of donor in the absence of acceptor
Define: $\mathrm{R}_{0}=\left[\frac{\left.\text { constant } \mathbf{x} \mathbf{k}^{2} \mathrm{Q}_{\mathrm{f}}^{\mathrm{D}_{4}}\right]^{1 / 6}}{\mathrm{n}^{4}}\right.$ spectral overlap factor
index of refraction between donor/acceptor:

$$
\mathrm{k}_{\mathrm{t}}=\frac{1}{\tau_{\mathrm{d}}}\left[\frac{\mathrm{R}_{0}}{\mathrm{R}^{6}}\right]^{6}
$$

usually guessed for hydrophobic interior of protein
R_{0} depends on the properties of the Donor and Acceptor and their relative orientation (usually $\boldsymbol{\kappa}^{2}=2 / 3$)
R_{0} has units of distance (\AA) and can be calculated in advance based on the spectral properties of the donor and acceptor pair if the orientation factor is guessed $(2 / 3)$

Experimental: Measure the efficiency of energy transfer

 What fraction of the excited donors transfer their energy to the acceptor?Quantum yield of donor - no Acceptor

$$
\mathrm{Q}_{\mathrm{f}, \mathrm{D}}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{I}}}
$$

Quantum yield of donor - plus Acceptor

$$
\mathrm{Q}_{\mathrm{f}, \mathrm{D}}^{\mathrm{A}}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{I}}+\mathbf{k}_{\mathrm{t}}}
$$

$$
E=\frac{Q_{f, D}-Q_{f, D}^{+A}}{Q_{f, D}} \equiv \frac{k_{t}}{k_{f}+k_{I}+k_{t}}
$$

$$
\mathrm{E}=\left[1-\frac{\mathrm{Q}_{\mathrm{f}, \mathrm{D}}^{+\mathrm{A}}}{\mathrm{Q}_{\mathrm{f}, \mathrm{D}}}\right]
$$

$$
E=\left[1-\frac{F}{F_{0}}\right]
$$

$$
\mathrm{E}=\left[1-\frac{\tau_{\mathrm{D}}^{+\mathrm{A}}}{\tau_{\mathrm{D}}}\right]
$$

added route for
returning to the ground state

Measuring quenching of the donor fluorescence due to energy transfer to the acceptor

Once the efficiency of energy transfer is determined, one can determine the distance between donor and acceptor if one knows $\mathbf{R}_{\mathbf{0}}$

$$
E=\text { Efficiency of energy transfer }
$$

$$
\begin{aligned}
& E=\frac{k_{t}}{k_{f}+k_{I}+k_{t}}=\frac{\frac{1}{\tau_{D}}\left(\frac{R_{0}}{R}\right)^{6}}{\frac{1}{\tau_{D}}+\frac{1}{\tau_{D}}\left(\frac{R_{0}}{R}\right)^{6}} \\
& E=\frac{1}{1+\left(R / R_{0}\right)^{6}}
\end{aligned}
$$

$$
R=\frac{(1-E)^{6}}{E} \cdot R_{0} \quad \begin{aligned}
& \text { 1) Calculate } \mathrm{R}_{0} \\
& \text { 2) Measure } \mathrm{E} \\
& \text { determine } \mathrm{R}
\end{aligned}
$$

Note that when $R=R_{0}, E=\mathbf{5 0 \%}$
R_{0} is the distance at which 50% of the excited state donor molecules transfer their energy to the acceptor.

An early experimental test from 1976:

Oligo prolines

Method is useful to distinguish close from far R_{0} values range from 15 to $50 \AA$ or more

Using Two GFPs as an Assay for Protein Kinase A Activity

yellow fluorescent protein

Phosphorylation results in binding of the substrate peptide to an phosphorylation recognition domain engineered into the same protein

The conformational change brings the YFP and CFP close to each other and gives a FRET signal

PNAS (2001) 98, 14997-15002

FRET Assay of Phosphokinase A Activity

PNAS (2001) 98, 14997-15002

FRET Showing Conformational Change in Motor

 Protein Myosin Associated with ATP Binding and Hydrolysis

N - and C- terminal Domains Move Apart Upon ATP binding/hydrolysis

Nature 396, 380-383 (1998)

Calmodulin: two globular domains and a long central helix

Ca^{2+} binding causes conformational changes in each globular domain that expose residues that bind to a wide variety of target proteins

The central helix collapses upon forming a complex with the target protein

Calmodulin complexed to CaMKinase II

Calmodulin

Question: Does Ca^{2+} binding itself cause a change in the central helix that alters the conformational relationship of the two globular domains?

Use FRET to address this.

Construct a double mutant:

$$
\begin{aligned}
& \text { Tyr99 } \rightarrow \text { Trp } \\
& \text { Leu69 } \rightarrow \text { Cys }
\end{aligned}
$$

Calmodulin

IAEDANS

FLUORESCENT LABEL FOR COVALENT ATTACHEMENT TO CYSTEINES

Calculating R_{0} between Tryptophan-99 and AEDANS

overlap integral
calculated from spectral overlap numerical integration

estimated index
of refraction
like non-polar solvent

$$
\mathrm{R}_{0}=22.6 \AA
$$

orientation factor:
assumes random orientations of donor and acceptor--rapid isotropic motion
quantum yield of donor: compare area under the emission spectrum to a standard: L-tryptophan, which has a known quantum yield of 0.14)

FRET Results: measure fluorescence from Trp99 in the presence and absence of AEDANS

Measuring FRET from Trp99 to AEDANS

by steady state fluorescence spectroscopy

What is the distance between the two domains?

Does calcium binding change the distance?
excite at 297 nm : only the tryptophan is excited at this wavelength.
The AEDANS fluorescence is entirely due to FRET

FRET Results: increase in energy transfer upon calcium binding

FRET Results

$$
\begin{aligned}
& \mathrm{r}=31 \AA\left(+\mathrm{Ca}^{2+}\right) \\
& \mathrm{r}=38 \AA(\mathrm{no} \mathrm{Ca}
\end{aligned}
$$

Trp99 \rightarrow AEDANS Energy Transfer

Structural difference due to Tyr138GIn is again evident

> Tyr138

Tyr138Phe

Tyr138Gln

Note large difference due to Ca^{2+} binding

Trp99 \rightarrow AEDANS Energy Transfer

Tyr138Phe eliminates the Ca^{2+} effect on the conformation of the central helix The distance between domains does not get shorter upon calcium binding

Tyr138Gln causes the structure of the central helix to partially collapse, resulting in the two globular domains getting closer together
Energy Transfer Efficiency Distance

Tyr138/+ Ca^{2+}	15%	$30 \AA$
Tyr138/- Ca^{2+}	7%	$37 \AA$
Tyr138Phe/+ Ca^{2+}	9%	$35 \AA$
Tyr138Phe/- Ca^{2+}	7%	$37 \AA$
Tyr138Gln/+ Ca^{2+}	$\mathbf{5 1 \%}$	$23 \AA$
Tyr138Gln/- Ca^{2+}	16%	$29 \AA$

Interaction of Ca -calmodulin with its target proteins also results in collapse of the central helix structure likely by altering key interactions, such as that of Tyr138

Sample problem 1: fluorescence and absorption

A fluorescent molecule has a single dissociating proton:

$$
\mathbf{X H} \quad \mathrm{X}^{-\xi+} \mathrm{H}^{+}
$$

XH and X^{-}have distinct absorption spectra, with a $\mathrm{pK}_{\mathrm{a}}=3.5$.

Part 1: Over the pH range 1-10 the emission spectrum does not change at all. Explain.

1) The equilibrium state of protonation of the ground state evidently does not influence the emission spectra.
2) The excited state must reach a rapid equilibrium with the protons within the excited state lifetime (about $10^{-8} \mathrm{sec}$).

Ground state is deprotonated at pH 6 but there is rapid proton equilibration during the excited state lifetime so the excited state can protonate before emission of a photon

pH 6

450 nm emission

Part 2: As the pH is changed from pH 10 to 14 , the emission peak shifts to the red from 500 nm to $\mathbf{4 5 0} \mathrm{nm}$. Explain what is occurring.

The blue shift denotes a change in the emitting species from XH^{*} to (X^{-})* as the $\mathbf{p H}$ is increased above $\mathbf{p H} 10$. The excited state $\mathbf{p K a}$ is apparently about $\mathbf{p H} 12$.

Sample problem:

A protein contains two tryptophan residues which each fluoresce with equal quantum yields. Upon urea denaturation of the protein, the fluorescence changes as shown. Explain.

solution: the tryptophans are fully exposed to water when the protein is denatured, but are buried in the protein in the native form. Solvent relaxation results in the Stokes shift to the red.
b. Acrylamide was used to quench the tryptophan fluorescence. A linear SternVolmer plot was obtained which could be measured by either steady state fluorescence or by lifetime measurements

What is the mechanism of quenching? Explain.

Solution: Dynamic quenching: the lifetime changes in parallel with the fluorescence intensity

A modified "reciprocal" form of the Stern-Volmer plot is shown below
Are all the tryptophan residues buried?

$$
\begin{aligned}
& \text { reciprocal "modified form } \\
& \text { of the Stern-Volmer equation } \\
& \mathrm{F}^{0} / \mathrm{F}=1+\mathrm{k}_{\mathrm{Q}} \tau_{0}[\mathrm{Q}] \\
& \left(\mathrm{F}^{0} / \mathrm{F}\right)-1=\mathrm{k}_{\mathrm{Q}} \tau_{0}[\mathrm{Q}] \\
& \mathrm{F} /\left(\mathrm{F}^{0}-\mathrm{F}\right)=1 /\left(\mathrm{k}_{\mathrm{Q}} \tau_{0}[\mathrm{Q}]\right)
\end{aligned}
$$

Solution: as [acrylamide] is increased to infinite concentration the fluorescence, F , goes to zero.

This implies complete exposure to acrylamide to collisional (dynamic) quenching. Acrylamide is small and hydrophobic and can penetrate proteins to quench even buried tryptophans

What is the value of the collisional rate constant?
How does this value compare with the maximum possible?

$\mathrm{F} / \mathrm{F}=1+\mathrm{k}_{\mathrm{Q}} \tau_{0}[\mathrm{Q}]$
Slope $=6.5 \mathrm{M}^{-1}=\mathrm{k}_{\mathrm{Q}} \tau_{\mathrm{o}}$
Since $\tau_{\mathrm{o}}=3.6 \mathrm{nsec}$, we can calculate that $\mathrm{k}_{\mathrm{Q}}=1.8 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
This is close to the diffusion limit of $10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Iodide (I^{-}) was used as a quencher with the same protein. In this case, the fluorescence lifetime did not change. The quenching pattern was dramatically altered in the presence of ATP, known to bind to the proein. 1. What kind of quenching is caused by iodide in this case?
2. Are all the tryptophans accessible to iodide?

$$
\mathrm{F}^{\mathrm{o}} / \mathrm{F}=1+\mathrm{k}_{\mathrm{Q}} \tau_{0}[\mathrm{Q}]
$$

$$
\mathrm{F} /\left(\mathrm{F}^{0}-\mathrm{F}\right)=1 /\left(\mathrm{k}_{\mathrm{Q}} \tau_{0}[\mathrm{Q}]\right)
$$

Since the lifetime does not change, this is static quenching, probably due to iodide binding at some site near a tryptophan residue.

The intercept of the modified Stern-Volmer plot is 1, indicating that half the fluorescence is not quenched even at infinite iodide ($\mathrm{F}=0.5 \mathrm{~F}^{\circ}$). One tryptophan residue is not accessible to iodide.

