
Lessons from previous lecture

1. In order to explain the “ultra violet catastrophe”, the temperature dependence of heat 
capacity, and the characteristics of the photoelectron effect, it was necessary to 
introduce some new ideas to supplement the classic view of electromagnetic 
radiation as a purely wave function. The recognition that emission  and absorption of 
light were quantized led to the development of quantum theory, and the recognition 
of the dual nature of electromagnetic radiation, - both wave-like and particle-like 
behavior. 

2. Because the transitions leading to emission or absorption of photons involved 
changes in energy levels in atoms and molecules, an understanding of the interaction 
of light required extension of the ideas of quantum theory to the structure of atoms 
and molecules. 

3. De Broglie’s recognition that all matter showed wave-like properties was confirmed 
for the electron by observations of diffraction.

4. The emission lines of hydrogen, as seen in the Balmer series (and later extensions to 
wider regions of the spectrum) provided an important clue. Any theory of atomic 
structure had to explain why the light emitted was constrained to narrow lines, and 
why they were spaced as observed. The positions in the spectrum represent discrete 
energies for the transitions between electronic states leading to emission. 

5. This led to the Bohr model of the H-atom, which successfully explained the Balmer
series by constraining the transitions to quantized changes.



The Bohr atom model and formula

The picture of an atom given by the Rutherford experiment was of a very compact 
nucleus surrounded by a large volume occupied by the electrons; the latter determines 
the volume seen by light or chemical reactivity. This was similar in general design to 
the solar system, giving rise to the idea that the electrons might be orbiting a central 
nucleus. Bohr took this idea, and applied the classical reasoning of planetary theory 
to it, but with a quantized twist. He calculated the energy of the system by balancing 
the kinetic energy of the electron in orbit (the centrifugal force) against the attractive 
energy of the coulombic interaction between the positively charged nucleus and the 
negatively charged electron. The twist was the use of quantized energy levels. 

The force due to coulombic attraction is given by:

(Z is charge of nucleus; r is radius of orbit; e is electron charge; ε0 is permittivity)

The force due to classical kinetic energy is given by:          (me is electron mass)

Equating these two forces we have

At this point we have a classical description of the forces in the system.

Bohr’s explanation for H-emission lines
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If we write the energy of the electron we need the sum of the two energy terms due 
to these forces:

Substituting the force terms we get the following classical expression for the energy 
of the electron:

The hydrogen emission lines were taken to represent the changes in energy due to 
transitions between energy levels in the excited H-atoms. A successful description 
of the energy level of the electron had to account for the curious spacing of the 
Balmer (and other) series. Bohr found he could achieve this by the simple expedient 
of imposing the condition of quantized energy levels; the angular momentum of the 
electron was restricted to values given by:                     
where h is Planck’s constant.

The energy of the electron was 

Applying this quantized restriction, he found that the changes in energy level were 
given by

This is identical to the equation for the spacing of the H emission lines.
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The Bohr mechanism for explaining the H-emission spectrum, and 
hence the allowed energy levels of the electron in the H-atom in its 
excited states, was a triumph, but it didn’t explain why the electrons 
were constrained to particular orbits; it was descriptive rather than 
explanatory. With the demonstration of the wave-nature of the 
electron through de Broglie’s postulate, and the diffraction of the 
electron, an explanation could be offered. If the electron is a wave, 
then its ability to fit an orbit must be constrained by the condition that 
it is a standing wave.

De Broglie’s extension of Bohr’s model.



In this case, assuming a simple sine wave, the relation between the 
radius of the orbit and the wavelength of the electron is given by the 
circumference and the wavelength                , n = 1, 2, 3,…

Substituting for λ from the de Broglie relationship we get 

Rearrangement gives Bohr’s equation, and explains the occupancy.
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The Schrödinger equation

The refinement of the Bohr model by de Broglie paved the way for the more 
formal description by Schrödinger. The concepts behind the new treatment 
were essentially the same as developed in the preceding slides. What 
Schrödinger added was a more powerful formalism for the description of the 
wave function. Unfortunately, this involves some elegant math, - a thing of 
beauty to the physicist, but perhaps not to the biologist. Fortunately, we don’t 
need to understand the math in detail to appreciate the results, so the approach 
here will be non-mathematical.

It will help to appreciate a few points:

1. So far we have dealt with simple waves, - effectively sine waves constrained 
by the need to form a standing wave. This is appropriate for a circular orbit. 
However, the new approach made it possible to describe wave functions that 
were three-dimensional, and more complex in shape, while maintaining the 
constraints required by quantization, and the need to form a “standing wave”.

2. In this context, the kinetic and potential energy terms of the Bohr equation are 
retained, but it was necessary to recognize that the values will depend in a 
more complicated way on the “shape” of the wave function.



3. Heisenberg had introduced his Uncertainty Principle, which showed that 
the momentum and position of the electron could not be determined 
simultaneously with certainty. Schrödinger therefore used a term related to 
the probability of the electron occupying a particular volume. 

4. In the context of the constraint of a “standing wave”, this made it possible to 
make the expression time-independent. Hence the time-independent 
Schrödinger equation. 

The Schrödinger equation for H-like atoms has the following form:

ψ
πε

ψ
π

ψ
r

Ze
m

hE
0

2
2

2

2

48
+∇−=



The Schrödinger equation for H-like atoms has the following form:

Let’s compare this to the classical expression for the energy of the
electron:                                 

The similarity arises from the need to consider the two balancing 
forces that determine the electron energy, - the kinetic term (the 
“centrifugal force” if we consider a planetary model), and the 
constraining electrostatic term for the potential energy.  The first 
term on the right (the kinetic term) is now quantized, and all terms 
are modified by the wave function, ψ. 

What is ψ, and what is that odd symbol, ∇2?
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The Schrödinger equation
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+∇−= It’s difficult to form a solid picture of what ψ

represents, but ψ2 is easier to grasp; it 
represents the probability of finding the electron 
at a particular point in space. This is more 
formally described by the Born approximation, 
which, for a one-dimensional system, states that 
the probability of finding the particle between x
and x + δx is proportional to ψ2δx. In three 
dimensions the probability is proportional to 
ψ2δV. 

The termψ2 is a probability density, and we get 
the probability by multiplying the density by the 
volume of the region of interest.

Examples of a particular wave function, ψ, in 
one-dimension, and its square, ψ2, plotted 
against distance are shown on the left. Note that 
for ψ2, all values are positive even when ψ goes 
negative. The shaded bar at the bottom is gray-
scale encoded to show probability. 



The odd symbol, ∇2 (pronounced del-squared) is a Laplace operator. In the 
one-dimensional case, ∇2 is superfluous. When we deal with a real system, we 
have three dimensions to worry about , - in the case of the H-atom and more 
complex 3-D systems we need to generalize the equation for three-dimensions. 

In the one-dimensional case (particle-in-a-box treatment), the term ∇2ψ is 
replaced by the second derivative of ψ with distance,            .

For the three dimensional case, in its simplest form as applied to Cartesian 
coordinates, ∇2 is an abbreviation for the term 

It tells us that we have to perform the second derivative operation on the wave 
function in a three dimensional coordinate system. It takes a more complicated 
appearance for other coordinate systems, but serves the same function. 
Because trigonometric functions provide a rich field for investigation of 
potential wave functions, ∇2 is often used in the context of spherical polar 
coordinates. 
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As noted above, the three operators on ψ all have energy units. They can be 
expressed in various forms, which makes for some confusion, but basically they 
represent the same energies as appear in the classical equation. The form of the 
equation above is that usually presented (this is just the previous equation 
rearranged). The Table below shows the equation for the 1-D case in different forms.

To cut the clutter, Planck’s 
constant, h, has been replace 
by ħ, defined by ħ=h/2π. 
Note that in the last line, the 
kinetic and potential energy 
terms have been lumped 
together into a single 
operator. This term also has 
energy units, and is called a 
Hamiltonian operator, HA

The energy operators

The kinetic energy operator, Tx is shown in classical form, Tx = ½mv2 =     , and in 
the quantized form above. The potential energy operator is represented by U(x).
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Finding appropriate forms for ψ

Solution of the Schrödinger equation involves the second derivative of the wave 
function, ψ. There are many solutions that can be found, and the problem is to 
know which ones are appropriate. We have to recognize constraints that relate 
to the physical reality of the system. These can be summarized as follows:

1. Acceptable solutions must be single-valued at all points in space. This is 
because there cannot be more than one answer to the question “What is the 
probability of finding the particle at a particular point in space?”.

2. Similarly, ψ must be continuous and finite. This constraint is necessary to 
provide the “standing-wave” character of the function.

3. The total value of ψ2 summed over all space must be 1. This is because the 
particle has to be somewhere, but there’s only one of them.

Because energy levels are quantized, the wave function can take different forms, 
depending on the quantum number.

As we have seen, the different quantum numbers in the Bohr model represented 
different energy levels for orbitals in the ground state and excited states of the 
H atom. The effect of this last property has interesting connotations when we 
consider the shapes of the orbitals defined by the wave function. 



Particle in a box, - the Schrödinger equation in 1-D

To solve this equation, we have to find an appropriate wave function, ψ. The 
wavelength of a harmonic oscillator in one-dimension is a sine function, and this 
provides an appropriate starting point for our search for a wave function. Let’s try

ψ = Asinkx

where x is distance. We will take a look at what happens if we set k = nπ/L, with L as 
the length of our box. Because sin π = sin 2π = sin 3π = 0, we expect this function to 
generate a curve that oscillates. In the next slide this function (with A =1) is plotted 
against distance (x) with different values of n, and with distance scaled to units of L.
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If we constrain our electron to a one-dimensional box, 
we can simplify things. In 1-D, we don’t have to worry 
about the potential energy term of the planetary model, -
the electron is constrained by the walls of the box, not by 
the attraction of the nucleus, so we only have to worry 
about the kinetic energy. And we don’t have to worry 
about ∇2, because we’re in 1-D. The Schrödinger 
equation then becomes:



Note that if we change the value of n in this equation, we change the number if 
beats per unit distance as measured by the number of times the curve crosses the 
zero-line at a node. The nodes define the distance at which we will form a 
“standing wave”. At distance x=L, for n = 1 we have 1 node; for n = 2, 2 nodes; n
= 3, 3 nodes; etc.

The plot on the right shows the square of the function versus the same distance 
scale. Each node generates a peak, so there are n peaks for each curve. The curves 
are all positive, so (remembering the ψ2 gives probability) they look suitable.
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Our choice of wave function looks pretty good, - it has the sorts of property we’re 
looking for. We now need to plug it into our Schrödinger equation to see if it 
satisfies all the constraints. Chang has a nice account of how to do this, which 
we will summarize here. Starting with ψ = Asinkx, the critical steps are:

1. Find the second derivative of this function (it’s given by -k2ψ)

2. Substitute ψ from this into the Schrödinger equation to find that                      , 

and that, by back substitution, .

3. Satisfy the boundary condition that ψ is zero at the walls. As we saw in previous 
slides, sin nπ = 0, so this is satisfied when x = 0 or L, the length of our box. 

From this, our function can work if                           (n is integer). Then by back 
substitution, 

and

4. Satisfy the constraint that the probability is 1. For this we need to adjust the 
amplitude of our sine wave, using the factor A. Tables of integrals give us a 
normalization constant such that                . We finally end up with:
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We have already seen plots of this function, and a version is shown on the left 
below, in the context of energy levels. We can now say that the energy of an 
electron in a one-dimensional box has different levels that are quantized, and that 
at each level the wave function, ψ, is a sine wave, with the number of nodes 
equal to the quantum number. The probability is given by ψ2, and this is shown 
in the right panel below.

from Atkins, The Elements of Physical Chemistry



Applying the Schrödinger equation to the hydrogen atom
Chang also has a succinct account of this, but starts off with a form of the equation 
which is unfamiliar. Our general equation is:

To get it into Chang’s form, we abbreviate

the potential energy term:                     ,

and rewrite the equation.

Then we bring all terms to one side,

and rearrange them.

This is Chang’s (14.39).

Then we substitute into the leftmost term using ∇2 in its spherical polar coordinate 
form, and put back the unabbreviated potential function. 

As Chang says: “Fortunately, this fearsome-looking equation has already been 
solved, so we need be concerned only with the result.”. 
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The solutions are given in Chang in a form appropriate for the spherical polar 
coordinates chosen.  The solutions requires that we use three quantum numbers to 
describe each energy level. The nomenclature for these is not very helpful. 

The three quantum numbers are: 

n, the principal quantum number; 

l, the angular momentum quantum 
number*;

ml, the magnetic quantum number. 

n = 1, 2, 3, …n

l = 0, 1, 2, …(n-1)

ml = 0, ±1, ±2, …, ±l

The resulting orbitals are grouped into 
subshells and shells, as nicely 
summarized on the left.

from Atkins, The Elements of Physical Chemistry
*Note that Chang also calls this the 
azimuthal quantum number.



The solutions of the equation give the energy of the electrons in the orbitals, and 
their distribution in space. The energy of the electron is given by: 

Not surprisingly (because it worked), this is the same as the equation Bohr 
developed to account for the emission lines for the H-atom. 

Where have the l and ml quantum numbers gone? 

Chang presents the above equation without explanation, but the answer is 
straightforward. All three quantum numbers characterize the electron distribution, 
but for any shell, all the wave functions use the same value for radius. The radius 
enters into the energy through the potential energy function, - the coulombic force 
holding the electron to the nucleus, which depends only on r, and is spherically 
symmetrical. Since this balances the centrifugal energy represented by the angular 
momentum of the electron, all electrons in the shell have the same potential energy 
function, determined by n, as in the Bohr equation. 

This simple case applies only to the H-atom.

Because n uniquely determines the energy, the value of E for a particular n is called 
its characteristic energy, or eigenvalue. The wave function for a particular n is 
called the characteristic wave function, or eigenfunction.
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The relation between ψ and probability of distribution depends on the quantum 
number. Choice of polar coordinates gives ψ as a function of r, θ, and φ, so that

The terms on the right are called the radial part, (R(r)), and the angular part, 
(Θ(θ)Φ(φ)), of this expression. As the equation shows, the radial part is dependent 
on r, so we can think of n as characterizing the distance dependence, with each 
shell having a different radius. The solution for each orbital differs (see Chang), 
depending on the values of the quantum numbers. For orbitals with l and m equal 
to zero, the solution depends only on r, the radius. As a consequence, these orbits 
are spherical.

)()()(),,( φθφθ ΦΘ=Ψ rRr

For non-zero l, and for m quantum numbers, 
the “shape” of the orbit is not spherical, and the 
wave function is determined by x, y and z, the 
parameters of its position in Cartesian space. 
For example, of the four electrons in the L
shell, one has l = 0, and hence m is also zero, 
and the orbital is spherical. The other three are 
arranged along the x, y, and z axes, and are not 
spherical.   



The Table on the right shows 
wave functions, in x, y and z 
coordinates, for hydrogenic
atoms (H, He+, Li2+, etc., - atoms 
with only 1 electron;  Z is the 
atomic number, giving the 
charge of the nucleus).

Chang has a more complete set 
of values with the radial and 
angular parts shown separately.

The Figures below show the 
“shapes” (boundary surfaces) of 
the corresponding orbitals.

from Atkins, The Elements of 
Physical Chemistry

from Tinoco, Sauer and Wang,  
Physical Chemistry

s

The subshells are named s, p, d, f, g, and h for electrons with l = 0, 1, 2, 3, 4 and 5.



Magnetic properties of the atom

We have skipped over the relation between ψ and the boundary surface, 
as represented by the “shapes” in the previous slide. Chang has a 
discussion of the radial distribution function, 4π r2ψ2, which provides a 
picture of the total probability of finding an electron in a spherical shell, 
but the pictures show enough information for our further discussion.

Does the Schrödinger equation provide a complete description?

No. The Schrödinger equation did not account for experimental results 
showing that some electron energy levels could be split by a magnetic 
field, - the Zeeman effect.



At the same time as Schrödinger was developing his approach, both 
Heisenberg and Dirac were developing alternative systems of equations. 
Both explicitly added a fourth dimension to their treatments, in recognition 
of Einstein's introduction of time as an addition to the three Cartesian 
coordinates of space. This introduced a fourth quantum number, which we 
now know as ms, the spin quantum number.

Deflection of Ag 
atom beam by a 
magnetic field

Splitting of Na D-
line emission by a 
magnetic field

from Atkins, 
The Elements 
of Physical 
Chemistry



The electron spin quantum number, and Pauli’s exclusion principle.

In order to account for the magnetic 
splitting of atomic lines, it was 
necessary to understand how the 
magnetic properties of the electron 
could be included in the grand 
scheme of the Schrödinger equation.

Since the electron has a negative charge,  it is clear that any electron moving in an 
orbital should also generate a magnetic field. Pauli realized that the problem could 
be inverted, - why do all atoms not show a magnetic response? The answer he 
proposed was that electrons normally came in pairs, so that their magnetic effects 
cancelled out. This would be the case if, in addition to movement in an “orbit”, the 
electrons were also spinning on their axes. Each electron would then be a magnet. A 
pair of electrons in the same orbit would cancel out, but only if they had opposite 
spins. More formally, Pauli’s exclusion principle states that two, but no more than 
two, electrons can occupy any orbit. As a result, the number of electron orbitals 
described by the Schrödinger equation was doubled, by adding the fourth quantum 
number, ms, which can have one of two values, +½ and -½. It was later realized that 
this was equivalent to inclusion of the fourth quantum number of Heisenberg’s or 
Dirac’s treatments. 

spin up or α spin down  or β



With the addition of ms, the properties of elements in the Periodic Table 
could be accounted for. In addition to the atomic number, and the matching 
of electronic to protonic charge, the reactivities of the elements could be 
explained in terms of the need to fill the electronic orbitals by sharing 
electrons, thus explaining the valence properties, and their periodic pattern.

Filling of orbital shells, - the 
building-up (Aufbau) principle



What are the take-home messages here?

1. The Schrödinger equation allows us to calculate exactly the distributions of 
electrons in hydrogen (and hydrogen-like) atoms with a single electron.

2. The orbitals described by solution of the Schrödinger equation are potential 
orbitals of occupancy of the one electron in a H-atom. It usually sits in 1s.

3. Application of the Schrödinger equation to atoms with more than one electron 
becomes increasingly intractable. This is because of interactions between the 
multiple charges of electrons and the nucleus; the many bodies problem cannot be 
solved exactly. 

4. Use of approximations shows that the orbitals in more complicated atoms likely 
have a similar probability distribution to the those calculated for the H-atom.

5. The orbitals provide insights into (and allow approximate calculations of) the 
molecular orbitals associated with chemistry.

6. The orbitals provide an explanation for properties seen in the Periodic Table.

7. The solutions explain the spectroscopic properties of atoms and molecules.



Molecular orbitals

Formation of the bonds in N2. The 2pz
orbitals overlap and coalesce into a σ
molecular orbital; the px and py orbitals form 
π orbitals perpendicular to each other.

1s orbitals of H-atoms 
coalesce to form a σ bond of 
H2, with cylindrical symmetry

Bond wave functions are formed by summing 
atomic wave functions. Bonds formed by 
combing antiparallel spins are favored. For H2, 
the molecular orbital has a lower energy than 
the atomic orbitals, so is stable.

The energy due to 
atomic interaction 
can be calculated 
as a function of R. 
The equilibrium 
bond length is at 
the minimum.

All figs. from Atkins, The Elements of Physical Chemistry



Bonds of carbon

Carbon has one empty, and two 1-electron filled 2p
orbitals, giving four valence electrons. In order to 
explain the symmetrical chemical  behavior of 
molecules like methane, we have to have four 
identical orbitals in tetrahedral symmetry. In order 
to provide these, a mixing of orbitals occurs, to give 
four sp3 hybrid orbitals (left). This involves 
promotion of 1 2s electron to the vacant 2p orbital, 
hence sp3. 

In methane, each sp3 forms a σ
bond with a 1s atom of H

In ethylene (ethene), the double-bond is made 
up of a σ and a π bond.

Figs. from Atkins, The Elements of Physical Chemistry



Take-home message on bonds.

1. Bonding orbitals can take up quite complicated shapes. Extended π-bonding 
occurs in molecules like cytochromes, chlorophylls, flavins, nucleic acid 
bases, tryptophan, etc. The electrons in these extended orbitals roam over 
the entire coordinated π system.

2. Transitions between energy levels in molecules can occur between orbitals 
of different type. The change in electron distribution results in an electrical 
dipole difference between the ground and excited states, as discussed in the 
earlier part of the course.  When the orbital is asymmetric, as in an extended 
π system, the excited state can remain in the π-orbital, but will have a 
different eigenfunction and eigenvalue, and so a different orbital “shape”. 
This also gives rise to an excited state dipole.

3. Normally, molecular orbitals are at lowest energy when they are filled by 
two electros of antiparallel spin. If an electron is removed (for example, by 
oxidation), or an extra electron added (for example, by reduction), the lone 
electron is not spin-coupled, and therefore acts as a magnet. The magnetic 
effect arises from the unpaired spin, and the magnetic dipole results from 
the angular momentum of the electron in its orbital. 


