
Light and other electromagnetic radiation –

applications in biology

1. A brief history of electromagnetic radiation

(http://members.aol.com/WSRNet/D1/hist.htm)

1. Wave nature of light

2. An introduction to quantum mechanics – dual nature of electromagnetic 
radiation 

3. The Schrödinger equations



Some examples of applications in biology
1. Absorption of light

a. Characterization by spectrum

b. Measurement of concentration

c. Kinetics, - variation of concentration with time

d. Polarization, circular dichroism, orientation of molecules

e. Light scattering, - molecular size

2. Fluorescence

a. Distance measurements by FRET

b. Diffusion times by FRAP

c. Lifetime of excited states – physics physiology of 
photosynthesis

3. Magnetic resonance

4. X-ray crystallography





Isaac Newton (1643 – 1727)



His main discovery was the ultraviolet region of the 
spectrum. He believed it “…broadened man's view 
beyond the narrow region of visible light …”. 

Ritter discovered that silver chloride decomposed in the 
presence of light, and that it decomposed at an even 
faster rate when exposed to invisible light. This proved 
that there was unknown radiation beyond the violet end 
of the spectrum - thenceforward to be called 'ultraviolet'. 

Frederick William 
Herschel (1738 -
1822) –
demonstrated the 
infrared spectrum 
by measuring heat.

Johann Wilhelm 
Ritter (1776 -1810) 





Newton’s theory of light was “corpuscular”; 
he believed that light must be made of 
particles, because it didn’t bend around 
corners in the way that waves were observed 
to do. 

Huygens in contrast believed that “…an 
expanding sphere of light behaves as if each 
point on the wave front were a new source of 
radiation of the same frequency and phase.” 

Huygens’ principle 
illustrated by water waves



Young’s experiment with light shining through a 
set of slits showed diffraction. This was as 
expected from Huygens’ hypothesis, and showed 
that light did bend around corners. Disproved 
Newton’s corpuscular hypothesis.



i) That a changing magnetic field should always be related to a changing electric 
field.
ii) That 'the rate of propagation of transverse vibrations...agrees so exactly with the 
velocity of light...that we can scarcely avoid the inference that light consists in the 
transverse vibrations of the same medium which is the cause of electric and 
magnetic phenomena'.
ii) In his 1864 Dynamical Theory of the Electromagnetic Field, Maxwell argued 
not simply that the optical and electromagnetic media were the same, but that
“light itself (including radiant heat, and other radiations if any) is an 
electromagnetic disturbance in the form of waves propagated through the 
electromagnetic field'.

James Clerk Maxwell
(1831-1879) 

Maxwell’s theory “…remains for all 
time one of the greatest triumphs of 
human intellectual endeavor.” 

Max Planck 



In 1887 Hertz tested Maxwell's hypothesis. He used an oscillator made of polished 
brass knobs, each connected to an induction coil and separated by a tiny gap over 
which sparks could leap. Hertz reasoned that, if Maxwell's predictions were 
correct, electromagnetic waves would be transmitted during each series of sparks. 
To confirm this, Hertz made a simple receiver of looped wire. At the ends of the 
loop were small knobs separated by a tiny gap. The receiver was placed several 
yards from the oscillator. According to theory, if electromagnetic waves were 
spreading from the oscillator sparks, they would induce a current in the loop that 
would send sparks across the gap. This occurred when Hertz turned on the 
oscillator, producing the first transmission and reception of electromagnetic waves.

Heinrich Rudolph Hertz
(1857 - 1894)



By the end of the 19th century, with the development of Maxwell’s field equations, 
the entire electromagnetic spectrum was explained by a few beautiful equations. All 
electromagnetic waves traveled at the speed of light, showed interference, 
diffraction, polarization, and changes in refraction in appropriate materials. They 
could be detected by a suitable “antenna”, ranging in size from the atomic and 
molecular to the antennae of radio stations, to match the wavelength. The equations 
explained the phenomena of induction (Faraday’s Laws), and so embraced 
electricity and magnetism.



Aspects of quantum mechanics important to an 
understanding of spectroscopy

Critical experiments in the development of quantum mechanics.

1. Black body radiation and the UV catastrophe explained by quantized 
energy levels for light and emitting oscillators (Planck).

2. Quantized energy changes in atoms (photoelectric effect, H-lines).

3. Dual nature of electron (and other matter) (De Broglie, Einstein, cathode 
rays, electron charge, electron diffraction).

4. Bohr’s explanation for H-emission lines.

5. Additional quantum mechanical developments (Heisenberg’s 
Uncertainty Principle, Relativity, Schrödinger).

6. Schrödinger time independent equation; particle-in-a-box.

7. Eigenfunctions and eigenvalues – quantum numbers for electron orbitals, 
molecular orbitals.

8. Spin and magnetic field (Dirac, Heisenberg, Pauli exclusion principle).



Dual nature of electromagnetic radiation – wave and particle

heat

light

Light emitted by a black body has a 
spectrum that depends on temperature.  
The “ideal black body” is a box with black 
walls, opening to the exterior through a 
small hole. Radiation escaping through the 
hole will be in thermal equilibrium with 
the temperature of the walls. 



Classical physics attempted to explain the shape of the curve of power (or energy 
density, ρ) as a function of wavelength through three laws.

Wien’s displacement law: Tλmax= constant (T is absolute temp., λmax is the peak of 
the curve, and the constant has a value of 2.9 mm K).

Stefan-Boltzman law: M = aT4 (M is the emittance (total power per unit area), 
and a has the value 56.7 nW m-2 K-4). This is why bulb filaments are run hot!

Rayleigh-Jeans law, which we will discuss next. The first two laws worked fine, but 
not the Rayleigh-Jeans law.

from Atkins, The Elements of Physical Chemistry

Ultraviolet catastrophe
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All energy levels allowed, so fraction 
of energy density with high energy 
increases as temperature increases.

The radiation escaping from a black body is 
determined by the energy loss from vibration of 
molecules (the electromagnetic oscillators) in the 
walls. These increase with T. The energy of the 
light emitted is determined by the oscillators.

from Atkins, The Elements of Physical Chemistry

Rayleigh-Jeans curve
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Energy levels quantized.  At any temperature, the 
transitions at higher energy levels are less likely to 
occur, so contribution to energy density falls off in 
high energy range (UV). As the energy (E = hν = 
hc/λ) approaches kT, the term in brackets approaches 
1, and the Planck equation becomes the same as the 
Rayleigh-Jeans equation. 

Planck proposed that the energy of the 
electromagnetic oscillators was limited to discrete 
values, rather than continuous. Planck’s famous 
equation is E = nhν, where n = 0, 1, 2, …, ν (= c/λ) 
is the frequency, and h is Planck’s constant, 6.626 
10-34 Js.

from Atkins, The Elements of Physical Chemistry

Planck’s curve



Temperature dependence of heat capacity

Heat capacity is the proportionality factor relating temperature rise, ∆T, to the heat 
applied: q = C∆T. The classical view was that C was related to the oscillation of 
atoms about their mean position, which increased as heat was applied. If the atoms 
could be excited to any energy, then a value of C = 3R = 25 JK-1 was expected, and 
this value, proposed by Dulong and Petit, was observed for many systems at ambient 
temperature. However, the expected behavior was a constant value as a function of 
T, and this was not seen, and some elements (diamond) had values way off.

from Atkins, The Elements of Physical Chemistry



Einstein showed that if 
Planck’s hypothesis of 
quantized energy levels was 
applied, the equation:

provided a good fit. This was 
later improved by Debye
who allowed a range of 
values for ν.
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Conclusions from Planck’s solution to the UV catastrophe and 
Einstein’s solution to the heat capacity problem

1. Heating a body leads to oscillations in the structure at the atomic 
level that generate light as electromagnetic waves over a broad 
region of the spectrum. This is an idea from classical physics.

2. From Planck’s hypothesis, the properties can be understood if 
the energy of the oscillations (and hence of the light) are 
constrained to discrete values, - 0, hν, 2hν, 3hν, etc. At any 
frequency value, the intensity of the light is a function of the
number of quanta, n, at a fixed energy, determined by hν. This is 
in contrast to the classical view in which energy levels were 
assumed to be continuous, and intensity at any frequency was 
dependent on the amplitude of the wave.

3. A similar conclusion comes from Einstein's treatment of the heat
capacity, but here the effect is seen from the oscillations 
generated in the substance on application of heat. Absorption of
energy is therefore also quantized.



The photoelectric 
effect

When UV light shines on a metal surface, it induces the 
release of electrons, which can be detected as a current in a 
circuit such as that on the left. The released electrons are 
attracted by an applied voltage to an anode, and the 
resulting current detected, and used to measure the rate of 
electron release. The characteristics of this effect are as 
follows:

1. No electrons are ejected, regardless of intensity, unless the 
light is sufficiently energetic. In terms of Planck’s 
equation, they have to have a high enough frequency. The 
actual value (the work function) depends on the metal.

2. The kinetic energy of the ejected electrons varies linearly 
with the frequency of the incident light, but is independent 
of intensity.

3. Even at low intensity, electrons are ejected immediately if 
the frequency is high enough.



The properties of the photoelectric effect are 
summarized on the left. 

Einstein suggested a solution to this dilemma, by 
invoking Planck’s hypothesis. The electron is 
ejected if it picks up enough energy from 
collision with a photon. However, the energy of 
the photon is given by the Planck equation, and 
so is proportional to frequency, and quantized. 

According to the classical view, the energy of radiation should be proportional to 
the amplitude squared. It should therefore be related to intensity, which is in 
contradiction to the result observed.

from Atkins, The Elements of Physical Chemistry



From the 1st law of thermodynamics, energy 
has to be conserved. We can therefore write 
an equation in which the kinetic energy of the 
electron is equal to the energy picked up from 
the photon, minus the energy needed to 
dislodge the electron (the work function, φ):

½mev2 = hν – φ

This is summarized in the diagram on the 
right.

from Atkins, The Elements of Physical Chemistry



Cathode rays

Electrons have both particle and wave-like properties

Cathode rays are emitted when a high 
voltage is applied between a cathode 
(negative) and an anode (positive) through a 
vacuum. They are called rays called because 
they have light-like properties, - they cast a 
shadow. However, in contrast to light, the 
rays could be deflected by application of an 
electric or magnetic field. This implied that 
the beam consisted of charged particles, -
later called electrons.



J.J. Thomson devised an apparatus 
which allowed him to measure the 
deflection of a cathode ray precisely. 
By varying the driving potential, he 
could vary the momentum of the 
electrons, and by varying the applied 
field and the deflection, he could 
estimate the ratio of the charge to 
mass of the particles.



Charge of electron, - Millikan’s oil drop experiment

From Thomson’s data, the ratio e/m 
for the electron could be measured, but 
not the absolute value of either. The 
critical missing piece was provided by 
Millikan. He measured the total charge 
on droplets of oil generated by a 
vaporiser, by applying an electrostatic 
field to oppose the force of gravity on 
the droplets. He charged up the 
droplets using a low-powered X-ray 
source. By measuring many droplets, 
he was able to show that they 
responded to the electrostatic field as if 
they hd a small range of values for 
charge, all being multiples of a 
limiting value, which he suggested 
must be the unit charge. 

Milikan’s unit charge provided the 
value for e in Thomson’s ratio, 
allowing complete characterization 
of the electron as a particle with 
defined mass and charge.



Dual nature of matter – wave and particle properties apply to 
subatomic particles

Einstein’s relation between energy and mass and the de Broglie equation

Einstein suggested in the context of special relativity that energy and mass 
are equivalent, and related through the famous E = mc2. De Broglie
realized that, if all matter was quantized, this implied a general relation 
between the momentum of a particle and its energy as expressed in terms 
of frequency. By combining the Planck equation, E = hν = hc/λ, and the 
relationship for the momentum of an electromagnetic wave (given by p = 
mc), p = E/c, we get:

The de Broglie relationship implies that any particle of mass m moving 
with velocity v will possess wavelike properties. In view of the value of 
the Planck constant, the effect will be appreciable for particles of low 
mass.
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Diffraction of electron beam

Confirmation of this more general 
application of quantum principles to 
matter was obtained in experiments in 
which the diffraction of a beam of 
electrons was observed (left). The 
diffraction pattern seen when the 
electron beam was accelerated to give 
a wavelength of 0.5 Å gave a pattern 
similar to that seen when a beam of X-
rays of similar wavelength (0.71 Å)
was used. 

The de Broglie relationship was proposed and tested in 1924, sometime after Bohr 
had put forward his model for the H-atom, which we will look at next. The 
demonstration that all matter was quantized, and the recognition of the importance 
of this in terms of the wave-like nature of particles of small mass like the electron, 
where critical in the later development of a comprehensive theory of quantum 
mechanics. 



Transmission and reflection of α-particles, and 
the Rutherford atom

The structure of atoms Rutherford and colleagues 
measured the penetration by a-
particles (He+ nuclei) of a thin 
sheet of metal foil. What they 
found was in complete 
contradiction to the picture of 
atomic structure current at the 
time. Instead of finding the 
mass of the atom spread out 
over the volume, the mass was 
concentrated in a very small 
fraction of the volume, as 
indicated by the very small 
fraction of particles whose 
trajectory was altered. In 
contrast, light absorption by 
atoms and molecules sees a 
“target” of the full volume of 
the atom or molecule. 
Ruthrfords interpretation of 
this data is shown at left.



Lines of hydrogen emission spectrum

Quantized energy changes in atoms

When a high voltage is discharged through 
a gas, the atoms or molecules absorb 
energy and from collision with the 
electrons, and re-emit the energy as light. It 
is found that the light is not a continuous 
range at all frequencies, but is constrained 
to a few narrow lines (right). Explanations 
of the emission spectrum of atomic 
hydrogen played a critical role in 
development of a quantum mechanical 
understanding of the structure of atoms.

Lines similar to those in the hydrogen 
emission spectrum were seen as absortion
lines in the light from stars.



Balmer studied the emission spectrum in the near UV-
visible region, and noticed that the distribution of the 
lines along the wavelength scale showed an interesting 
pattern that could be described by the Balmer formula: 

where n is 3, 4, 5,… Later work revealed a more 
extensive set of lines in the UV and IR, which all 
followed the general pattern given by: 

where      is the Rydberg constant, and nL and nH are 
lower and higher value integers.     
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The Bohr atom model and formula

The picture of an atom given by the Rutherford experiment was of a very compact 
nucleus surrounded by a large volume occupied by the electrons; the latter determines 
the volume seen by light or chemical reactivity. This was similar in general design to 
the solar system, giving rise to the idea that the electrons might be orbiting a central 
nucleus. Bohr took this idea, and applied the classical reasoning of planetary theory 
to it, but with a quantized twist. He calculated the energy of the system by balancing 
the kinetic energy of the electron in orbit (the centrifugal force) against the attractive 
energy of the coulombic interaction between the positively charged nucleus and the 
negatively charged electron. The twist was the use of quantized energy levels. 

The force due to coulombic attraction is given by:

(Z is charge of nucleus; r is radius of orbit; e is electron charge; ε0 is permittivity)

The force due to classical kinetic energy is given by:          (me is electron mass)

Equating these two forces we have

At this point we have a classical description of the forces in the system.

Bohr’s explanation for H-emission lines
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If we write the energy of the electron we need the sum of the two energy terms due 
to these forces:

Substituting the force terms we get the following classical expression for the energy 
of the electron:

The hydrogen emission lines were taken to represent the changes in energy due to 
transitions between energy levels in the excited H-atoms. A successful description 
of the energy level of the electron had to account for the curious spacing of the 
Balmer (and other) series. Bohr found he could achieve this by the simple expedient 
of imposing the condition of quantized energy levels; the angular momentum of the 
electron was restricted to values given by:                     
where h is Planck’s constant.

The energy of the electron was 

Applying this quantized restriction, he found that the changes in energy level were 
given by

This is identical to the equation for the spacing of the H emission lines.
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The Bohr mechanism for explaining the H-emission spectrum, and hence the 
allowed energy levels of the electron in the H-atom in its excited states, was a 
triumph, but it didn’t explain why the electrons were constrained to particular 
orbits; it was descriptive rather than explanatory. With the demonstration of the 
wave-nature of the electron through de Broglie’s postulate, and the diffraction of the 
electron, an explanation could be offered. If the electron is a wave, then its ability to 
fit an orbit must be constrained by the condition that it is a standing wave.

In this case, the relation between the radius 
of the orbit and the wavelength of the 
electron is                 , n = 1, 2, 3,…

Substituting for λ from the de Broglie
relationship we get 

Rearrangement gives Bohr’s equation, and 
explains the occupancy.

λπ nr =2

De Broglie’s extension of Bohr’s model.
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The Schrödinger equation

The refinement of the Bohr model by de Broglie paved the way for the more 
formal description by Schrödinger. The concepts behind the new treatment 
were essentially the same as developed in the preceding slides. What 
Schrödinger added was a more powerful formalism for the description of the 
wave function. Unfortunately, this involves some elegant math, - a thing of 
beauty to the physicist, but perhaps not to the biologist. Fortunately, we don’t 
need to understand the math in detail to appreciate the results, so the approach 
here will be non-mathematical.

It will help to appreciate a few points:

1. So far we have dealt with simple waves, - effectively sine waves constrained 
by the need to form a standing wave. This is appropriate for a circular orbit. 
However, the new approach made it possible to describe wave functions that 
were three-dimensional, and more complex in shape, while maintaining the 
constraints required by quantization, and the need to form a “standing wave”.

2. In this context, the kinetic and potential energy terms of the Bohr equation are 
retained, but it was necessary to recognize that the values will depend in a 
more complicated way on the “shape” of the wave function.



3. Heisenberg had introduced his Uncertainty Principle, which showed that the 
momentum and position of the electron could not be determined simultaneously 
with certainty. Schrödinger therefore used a term related to the probability of the 
electron occupying a particular volume. 

4. In the context of the constraint of a “standing wave”, this made it possible to make 
the expression time-independent. Hence the time-independent Schrödinger 
equation. 

The Schrödinger equation for H-like atoms has the following form:

Compare this to the classical expression for the energy of the electron:                             
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The Schrödinger equation for H-like atoms has the following form:

Compare this to the classical expression for the energy of the 
electron:                                 

The similarity arises from the need to consider the two balancing 
forces that determine the electron energy, - the kinetic term (the 
“centrifugal force” if we consider a planetary model), and the 
constraining electrostatic term for the potential energy.  The first 
term on the right (the kinetic term) is now quantized, and all terms 
are modified by the wave function, ψ. 

What is ψ, and what is that odd symbol, ∇2?
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The Schrödinger equation


